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De novo design of self-assembling peptides 
with antimicrobial activity guided by deep 
learning
 

Huayang Liu    1,2,6, Zilin Song    3,4,5,6, Yu Zhang1, Bihan Wu1, Dinghao Chen    1, 
Ziao Zhou1, Hongyue Zhang1, Sangshuang Li    1, Xinping Feng3,5, 
Jing Huang    3,4,5  & Huaimin Wang    1,2 

Bioinspired materials based on self-assembling peptides are promising 
for tackling various challenges in biomedical engineering. While 
contemporary data-driven approaches have led to the discovery of 
self-assembling peptides with various structures and properties, predicting 
the functionalities of these materials is still challenging. Here we describe 
the deep learning-guided de novo design of antimicrobial materials based 
on self-assembling peptides targeting bacterial membranes to address the 
emerging problem of bacterial drug resistance. Our approach integrates 
non-natural amino acids for enhanced peptide self-assembly and effectively 
predicts the functional activity of the self-assembling peptide materials 
with minimal experimental annotation. The designed self-assembling 
peptide leader displays excellent in vivo therapeutic efficacy against 
intestinal bacterial infection in mice. Moreover, it exhibits an enhanced 
biofilm eradication capability and does not induce acquired drug resistance. 
Mechanistic studies reveal that the designed peptide can self-assemble 
on bacterial membranes to form nanofibrous structures for killing 
multidrug-resistant bacteria. This work thus provides a strategy to discover 
functional peptide materials by customized design.

Self-assembling functional peptide (SAFP) materials have been ration-
ally designed and applied across various fields due to their ease of 
synthesis and functionalization1–6. For example, Silva et al. designed an 
amphiphilic peptide by incorporating the binding subsequence (IKVAV) 
as a self-assembly motif that can form nanofibrous hydrogels7 to pro-
mote neuron differentiation. Yolamanova et al. reported an artificial 
nanofibrous dodecapeptide that facilitates retroviral gene transfer 
more efficiently than naturally occurring semen-derived enhancers 
of viral infection fibrils8,9. It has also been reported that incorporating 

tuning motifs promotes in situ peptide self-assembling that exhibits 
prominent potential for the fields of cancer therapy and bioimaging10. 
The outstanding function and biocompatibility of SAFPs make them 
prime candidates for developing biodegradable materials for regen-
erative medicine and tissue engineering.

However, only a limited number of SAFP materials can be devel-
oped via empirical design. Computer-aided approaches have facilitated 
transformative advances in structural predictions and the design of 
proteins11–15. Large protein language models such as AlphaFold rely 
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enables efficient high-throughput screening of the SAFPs with potent 
antimicrobial activity in the designated sequence space, which was cor-
roborated by subsequent self-assembling characterizations and antimi-
crobial assays against multiple bacterial strains. The most potent SAFPs 
with antimicrobial function are further screened by biocompatibility 
assays, including cytotoxicity and haemolysis (Fig. 1c). The identified 
SAFPs were found to be unsusceptible to antimicrobial resistance and 
are innately capable of biofilm eradication, outperforming antibiotic 
agents. Finally, the identified SAFPs exhibit therapeutic efficacy in a 
mouse model of intestinal infection (Fig. 1d). Overall, we demonstrate 
the de novo design of SAFPs featuring designated bio-functions, a 
process that can facilitate the development of peptide materials in 
different scenarios.

Design of the TransSAFP model
We compiled the antimicrobial activity datasets of peptides based on 20 
natural AAs from the Database of Antimicrobial Activity and Structure 
of Peptides (DBAASP)19,20 (Fig. 2a). Since no data on the antimicrobial 
activity of SAFPs is available, we established the SAFP antimicrobial 
activity dataset by synthesizing peptides with self-assembling groups 
at the N terminus and testing their antimicrobial activities. In total, we 
created the SAFP antimicrobial activity dataset with balanced numbers 
of positive and negative training examples (Fig. 2b), which covers all 11 
N-terminal types (Fig. 2c). The currently available data are yet too sparse 
compared to the entire (>20; ref. 15) peptide sequence space of interest, 

heavily on the sequence coevolution manifolds, which are highly 
noisy on the sequences with short lengths (<16 amino acids, AAs) or 
non-natural AAs12, rendering the strategy unfavourable for SAFP discov-
ery based on model fine-tuning. Progress has been made in developing 
specific computational tools based on the value of aggregation propen-
sity for locating short self-assembling peptides in the vast sequence 
space16–18. However, the functional activity of these self-assembling 
peptide materials cannot be predicted in a straightforward manner 
based on computational approaches, and the strategy for effective 
SAFP design requires further experimental validation.

In this Article, we describe a robust and transferrable deep learning 
(DL) model, named the TransSAFP, which enables effective prediction 
of the functional activity of SAFPs relying only on minimal experi-
mental efforts for sample annotation. We showcase the creation of 
new SAFPs featuring antimicrobial activity against clinically relevant 
bacterial strains. First, self-assembling moieties were introduced into 
the peptide sequences to activate self-assembling activity as a promis-
ing source of new SAFPs. The SAFPs were then subjected to minimum 
inhibitory concentration (MIC) tests to determine their potential 
antimicrobial activity with enhanced self-assembling ability (Fig. 1a). 
Subsequently, the TransSAFP representation learning module was 
initially pretrained on the public dataset of peptides composed of the 
20 natural AAs. This pretraining was followed by fine-tuning the module 
on a downstream SAFP prediction task, incorporating self-assembling 
moieties and new representation augmentations (Fig. 1b). TransSAFP 
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Fig. 1 | Overview of the discovery workflow of the new SAFP materials.  
a, Different types of self-assembling motifs are introduced into peptide 
sequences based on 20 AAs. According to the target function (for example, 
antimicrobial), the antimicrobial activities of SAFPs are determined via MIC 
experiments. The ellipsis indicates SAFPs with MIC values equal to or lower 
than 100 μg/ml are classified as positive data, while those with MIC values 
higher than 100 μg/ml are classified as negative data. The training database is 
compiled from publicly available data and lab data. b, The DL model (TransSAFP) 
consists of a pretrain module (blue) and a transfer learning module (orange). 

The pretrain module and transfer learning module are separately trained using 
public peptides and SAFPs, respectively. c, TranSAFP provides a library of SAFP 
candidates with antimicrobial activity. Additional experiments are carried out 
to characterize their self-assembling properties and screen the identified SAFPs 
for outstanding antimicrobial ability and biocompatibility. d, The identified 
SAFP undergoes in vitro antimicrobial assays, including the development of 
drug resistance and biofilm eradication. The in vivo therapeutic efficacy of the 
identified SAFP is evaluated by assays of survival rate, bacterial burden, gut 
microbiome and so on.
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Fig. 2 | The TransSAFP protocol for identifying potential SAFPs. a,b, The 
fraction of positive and negative antimicrobial sequences in the public dataset 
(a) and the SAFP dataset (b). c, The number of antimicrobial positive and negative 
SAFPs classified by N-terminal modification type. d, The precision–recall 
curves of candidate sequence-learning-model architectures for the pretrain 
module selection. The model names are defined in the Methods. e, The model 
architecture of the pretrain–transfer learning self-attention neural network 
for SAFP discovery. The pretrain module (left, grey background) learns to 
predict the antimicrobial activity of peptides from AA sequence information 
and to reconstruct their sequence identity. The transfer learning module (right, 
white background) learns to predict the antimicrobial activity of SAFPs using 
the augmented latent embeddings from the pretrain module. f,g, The UMAP 
embeddings of the learned vectorized embedding of each AA type (f) and the 
learned latent space of the pretrain module (g); the labels pep (±) refer to the 
antimicrobially active or inactive peptides. The pretraining model exhibits 

high-frequency characteristics as the peptide latent features artificially 
aggregate into scattered clusters. h, The precision (Pr), recall (Rc), accuracy 
(Acc), F1 score (F1) and Matthews correlation coefficient (MCC) values of the 
transfer learning module under different augmentation schemes. From left to 
right are the following: the pretrain–transfer learning neural network with no 
augmentation (Plain model), with noise augmentation in the AA embedding 
space (Plain-EN model), with sample weights balancing (Plain-SW model) and 
with both augmentations (Full model). Note that the noise-augmented models 
demonstrate stronger learning power with higher scores in all metrics. i, The 
UMAP embedding of the learned latent space of the transfer learning module; 
the labels SAFP (±) refer to the antimicrobially active or inactive SAFPs. The 
high-frequency characteristics are suppressed by the sequence-invariant 
noise augmentation in the transfer model as the learned SAFP representations 
assembles two major clusters distinguishable by their antimicrobial activities 
with a clear decision boundary.
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which we have further extended with N-terminal self-assembling groups. 
To overcome this challenge, we adopted the pretrain–transfer learn-
ing model, TransSAFP, which maps the input domain of natural AA 
sequences to the output domain of the extended SAFP space. Since the 
peptide sequence together with the N-terminal modification uniquely 
determines the properties of the SAFPs, the peptide sequences and a 
token for the N-terminal group are used as the input features.

We partitioned the learning task into two phases: the pretrain mod-
ule and the transfer learning module. The pretrain module learns a latent 
representation that could correctly predict the antimicrobial labels (ypre-

dict) and faithfully reconstructs the input sequence for downstream tasks 
(xreconstruct). To begin with, we selected a multi-head attention model with 
a transformer-like cross-attention21 from a benchmark test of ten clas-
sical sequence-learning-model architectures (Fig. 2d,e). The selected 
self-attention learning module achieved the highest performance in 
most metrics on the testing set and has a much faster inference time 
compared to other network architectures (Supplementary Figs. 1–3 
and Supplementary Tables 1 and 2). In addition, directly extending 
the pretraining network by incorporating the self-assembling moiety 
tokens showed insufficient learning power on the SAFP predictions 
(Supplementary Fig. 4 and Supplementary Table 3). This is potentially 
due to the fact that the natural AA peptide and the N-terminal-modified 
SAFPs form different distribution manifolds in the sequence space, cre-
ating the necessity of a rational training strategy for the representation 
learning of the SAFP feature embeddings.

We investigated the Uniform Manifold Approximation Projection 
(UMAP)22 reduced token vectors of each AA from the embedding layer 
of the pretrain module. This analysis showed that the learned feature 
representations resembled the empirical AA clustering using phys-
icochemical properties to a large extent (Fig. 2f). While the pretrain 
module remained accurate in predicting the antimicrobial activities, 
the UMAP embedding of its output latent space demonstrated rugged 
data distributions with negative predictions artificially aggregated 
into two clusters (Fig. 2g). Such typical high-frequency characteristics 
suggest that the pretrain module is prone to overfit on limited training 
samples, which consequently impedes high-quality transfer learning23. 
Furthermore, stable training of the transfer learning module is hard 
to realize due to the SAFPs being poisoned by unbalanced N-terminal 
modification distributions, especially when routine data augmenta-
tion practices are generally inapplicable to peptide encodings. How-
ever, vanilla transfer fine-tuning protocols are known to suffer from 
catastrophic forgetting where the established correlation between 
the peptide sequences and the functionalities is discarded by the 
downstream learning module, such that the learned representation 
in the pretraining displays no increment for the transfer learning task.

Considering these factors, we designed the transfer learning 
module to extend the pretrain sequence embeddings towards the 
SAFP input domain (Fig. 2e). Specifically, the transfer learning module 
inputs were constructed by concatenating the latent output from the 
frozen pretrain module with the N-terminal self-assembling groups 
(or no self-assembling group) using a separated embedding entry. 

The concatenated latent features were embedded through a standard 
self-attention block and were flattened to predict the final antimicro-
bial activity label via a sigmoid activation. To preserve the learned 
correlation in the pretrain module, we also incorporated the peptide 
sequences from the pretraining natural AA sequences to form the SAFP 
dataset. Since the SAFP dataset was swarmed with the public dataset, 
the transfer learning module was biased towards the SAFPs by assigning 
sample weights, wj, to the loss function according to the occurrence of 
the jth type of N-terminal self-assembling group in the dataset. In this 
case, the loss contributions of the public non-modified sequences act 
essentially as regularization terms aiming to prevent the catastrophic 
forgetting of AA sequence contributions in the downstream module 
(Supplementary Fig. 5 and Supplementary Table 3). Notably, a noise 
augmentation scheme was introduced for the AA token vectors in the 
peptide sequence embedding input. Specifically, during the trans-
fer learning module training, we introduced noise vectors sampled 
uniformly from the spherical tessellations of the pretrain embed-
ding space. The noise augmentations introduced here are sequence 
immutable as guaranteed by the noise sampling bounds and compu-
tationally efficient due to the number of AA embeddings (Methods). 
The transfer learning module trained with both sample weight biasing 
and noise-augmented embedding could correctly recognize all antimi-
crobial SAFPs with only 7 false positives out of 310 predictions. While 
the full model (TransSAFP) outperforms the augmentation-ablated 
models (Fig. 2h) as well as models from alternative training strategies 
(Supplementary Figs. 4 and 5 and Supplementary Table 3) in all perfor-
mance metrics, we note that our noise augmentations to the embed-
ding annotation largely improve the models’ performance in both the 
public dataset and the SAFP dataset (Supplementary Figs. 6 and 7 and 
Supplementary Table 4). In principle, the noise embedding smooths 
the discrete feature space formed by the quantized token vectors 
and suppresses the high-frequency characters on the loss landscape, 
which allows convergence to a flat minimum and promotes model 
generalization. Moreover, the UMAP embedding of the latent space 
in the full transfer learning module demonstrates an ordered learned 
distribution with a smooth decision boundary that differentiates the 
antimicrobial active and non-active SAFPs (Fig. 2i). Given the minimal 
scope for further improvement in the present transfer module, we 
proceeded with the current TransSAFP protocol for the subsequent 
screening of potential antimicrobial SAFPs.

TransSAFP-guided screening of antimicrobial 
SAFPs
First we used peptide sequences from the public dataset and 11 
self-assembling groups to generate a new SAFP sequence space 
(length of sequences, 6–15 AAs) in silico and then employed Trans-
SAFP to predict it. Subsequently, we shortlisted the SAFP sequences 
that achieved high model prediction scores (>0.99) for their antimi-
crobial activity. From this shortlist, we selected 140 SAFP candidates 
(labeled as p1–p140, Supplementary Table 5) with a balanced propor-
tion of all N-terminal types (Fig. 3a), which are subjected to subsequent 

Fig. 3 | Experimental validation and screening of SAFP candidates.  
a, Decomposition of 140 chemically synthesized SAFP candidates by the number 
(above line) of each N-terminal type (below line). b, MIC assays against E. coli, 
S. aureus, S. Typhimurium and L. monocytogenes confirmed that 121 out of 140 
SAFP candidates exhibited antimicrobial activity, demonstrating a success rate 
of ~86% for designing antimicrobial SAFPs with TransSAFP. c, Identified SAFPs 
exhibited a self-assembling ability, confirmed by CAC measurements. CAC values 
are indicated by black arrows. The bars shown are mean ± s.d. (n = 3 independent 
replicates). d, Cryo-EM images of antimicrobial SAFPs demonstrate that the 
identified SAFPs self-assemble into structures with distinct morphologies. 
Scale bars, 100 nm. e, The ratio of synthesized SAFP candidates with different 
antimicrobial activities in different CAC ranges, showing that stronger self-
assembly ability is generally associated with enhanced antimicrobial activity. 

f, The log10(CAC/MIC) value distribution of SAFP candidates reveals that most 
SAFPs exert antimicrobial activity at concentrations above or near their CAC 
values. The dotted lines represent the quartiles and the dashed lines represent 
the median, while the line at zero is a guide for the eye. g, MIC distributions of all 
chemically synthesized SAFP candidates. Identified SAFPs show good activity 
against four bacterial strains. The figure legend is same as that for b. The dotted 
lines represent the quartiles and the dashed lines represent the median, while 
the line at 100 is a guide for the eye. h, EC50/MIC and HC50/MIC selective indexes 
on highly potent antimicrobial SAFP candidates. The p45 exhibits the best 
selectivity among identified SAFPs. HC50 and EC50 were determined from rabbit 
red blood cells and GES-1 cells, respectively. The red colour map illustrates the 
MIC values against S. Typhimurium, the same as in b. i, MICs of p45 against  
14 bacterial strains, showing its broad-spectrum antimicrobial activity.
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chemical synthesis and purification. MIC assays against four bacteria 
strains (Escherichia coli, American Type Culture Collection (ATCC) 
25922; Staphylococcus aureus, ATCC 25923; Salmonella enterica subsp. 
enterica serovar Typhimurium, SL1344; and Listeria monocytogenes, 
National Center for Medical Culture Collections (CMCC) 54004) were 
conducted to validate the antimicrobial activity of the synthesized 
candidates (Fig. 3b).

We identified 121 SAFP candidates that are inhibitive to at least one 
of the pathogen strains with MICs of ≤100 μg ml–1, corresponding to an 

~86% success rate of antimicrobial SAFP design in the low-data SAFP 
regime. Simultaneously, we note that the N-terminal self-assembling 
moieties can enhance the antimicrobial activity of some peptides or 
transform non-antimicrobial peptides (non-AMPs) into antimicrobial 
ones. To elucidate the underlying mechanisms of the self-assembly, 
we first simulated the selected SAFPs using coarse-grained molecular 
dynamics in explicit solvent. The coarse-grained molecular dynamics 
results demonstrate that the SAFPs self-assemble within the 500 ns 
simulation time with an aggregation propensity of >1, suggesting 
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theoretically their strong tendency to auto-aggregate (Supplementary 
Figs. 8 and 9). The self-assembling ability of the SAFPs was evaluated by 
assays in critical aggregation concentrations (CACs). The CAC values 
of most antimicrobial SAFPs are less than 100 μg ml–1 (Fig. 3c and Sup-
plementary Fig. 10), validating their strong self-assembling ability in 
solution. Dynamic light scattering (DLS) measurements indicate that 
the discovered SAFPs can form nanostructures in solution, as evi-
denced by the correlation function (Supplementary Fig. 11). Cryogenic 
electron microscopy (cryo-EM) images (Fig. 3d and Supplementary 
Fig. 10) reveal that the SAFPs exhibit a diverse range of assembly mor-
phologies, including nano aggregates (p7, p38, p41, p45), long fibres 
(p27, p30, p87), short fibres (p89, p109), worm-like structures (p33, 
p56), nanonets (p69, p97, p103, p124) and sheets (p73). The reported 
SAFPs in Fig. 3d displayed at least two types of secondary structure 
after self-assembly, typically dominated by random coil structure 
with a small fraction of β-sheet or α-helix, as observed with circular 
dichroism (CD) and Fourier transform infrared (FTIR) spectroscopies 
(Supplementary Fig. 12 and Supplementary Tables 6 and 7). Due to 
the different sample conditions in CD and FTIR measurements (Sup-
plementary Information), slight discrepancies exist in the analysis 
results. However, the CD analysis should provide the in situ secondary 
structure of the reported SAFPs in phosphate-buffered saline (PBS) 
buffer. We observed downshifts on the C=O group and the broader 
peaks of the NH group, which indicate the formation of stronger hydro-
gen bonds in SAFP assemblies24–26 (Supplementary Figs. 13 and 14 and 
Supplementary Tables 8 and 9). Perturbation reflected by the shift 
of ethylene C–H stretches indicates the existence of interactions to 
alkyl-chain N-terminal modifications in p7, p30, p87 and p89 (ref. 27). 
Synergistically, wide-angle X-ray scattering measurements (Supple-
mentary Fig. 15) displayed the characteristic peak for π–π staking at 
the d-spacing dπ–π = 3.4 Å (ref. 28) in SAFP assemblies with aromatic N 
terminals (p33, p41, p56 and p69). This phenomenon was also observed 
in p7, which is potentially attributed to the presence of the aromatic 
AA (tryptophan) within its sequence. Overall, the integrated analysis 
based on DLS, cryo-EM, CD spectroscopy, FTIR spectroscopy and 
wide-angle X-ray scattering provides a comprehensive understanding 
of the structural features and intermolecular interactions driving the 
self-assembly of the discovered SAFPs.

As shown in Fig. 3e, the antimicrobial activity of these SAFPs is 
related to their self-assembling ability as more than half of SAFPs are 
distributed in the lower-left region, indicating that the SAFPs with a 
stronger ability to self-assemble often exhibit more excellent antimi-
crobial activity. Approximately 40% of the CAC values are lower than the 
MIC values of SAFPs (log10(CAC/MIC) < 0), suggesting the formation of 
self-assemblies during the antimicrobial function of the SAFP (Fig. 3f). 
In principle, peptides generally can accumulate near bacteria, leading 
to a localized increase in concentration, reaching the CAC in specific 
regions where SAFPs form self-assemblies and exert antimicrobial 
function, which explains the MIC values being slightly lower than the 
corresponding CAC measures for the rest of the SAFPs. To further 
investigate the potential connection between the self-assembling 
property of the discovered SAFPs and their antimicrobial activity, we 
synthesized multiple SAFP analogues with similar physicochemical 
properties but distinct self-assembling properties. By retaining the AA 
composition and other key characteristics, we aimed to investigate the 
effect of self-assembly on the antimicrobial function of the discovered 
SAFPs. The results (Supplementary Table 10) demonstrate that when 
the physicochemical properties are consistent, the peptides with a 
stronger self-assembling propensity, characterized by lower CACs, 
generally display enhanced antimicrobial activity with lower MICs, and 
vice versa. Furthermore, we found that disrupting the self-assembled 
structures of the SAFPs using the surfactant Tween-80 leads to a loss 
of their antimicrobial activity at concentrations where the peptides 
would otherwise self-assemble and exhibit antimicrobial effects (Sup-
plementary Fig. 16). In summary, these results demonstrate that the 

self-assembling ability of the discovered SAFPs typically determines 
their antimicrobial activity.

The MIC value distribution (Fig. 3g) indicated that Gram-negative 
bacteria, and S. Typhimurium in particular, are less susceptible to most 
designed antimicrobial SAFPs. Therefore, we referred to this strain as 
the potency measure for subsequent antimicrobial SAFP screening 
based on two selective indexes, HC50/MIC and EC50/MIC, which were 
derived from cytotoxicity, haemolysis and MIC experiments (HC50 is 
the concentration needed to cause 50% haemolysis; EC50 is the ‘effec-
tive concentration’ or the concentration of the antimicrobial that 
inhibits 50% cellular growth). The SAFP p45 was selected as the most 
prominent antimicrobial candidate due to its outstanding biocom-
patibility (Fig. 3h and Supplementary Table 11). Moreover, p45 also 
showed broad-spectrum antimicrobial capability against ten additional 
pathogenic strains (Fig. 3i), including Enterobacter cancerogenus (BeNa 
Culture Collection (BNCC) 363037), Staphylococcus epidemidis (BNCC 
330867), Acinetobacter baumannii (BNCC 254392), Klebsiella pneumo-
niae (BNCC 102997) and Pseudomonas aeruginosa (BNCC 360085). 
Moreover, p45 also exhibited good efficacy against drug-resistant 
strains, such as Staphylococcus aureus (USA 300, methicillin resist-
ant), E. coli (BNCC 186732, multidrug resistant), Enterococcus faecium 
(ATCC 51559, multidrug resistant), Enterococcus faecalis (ATCC 51299, 
vancomycin resistant) and Enterococcus faecalis (ATCC 51575, multid-
rug resistant). In particular, p45 exhibits good antimicrobial activity 
against several ESKAPE pathogens.

To identify antimicrobial SAFPs with AA sequences that are far 
from the known peptide space, we also adopted a de novo screening 
protocol that focused on the entire octa-SAFP library with all 11 types 
of N-terminal modifications (Fig. 4a; Methods). Most of the filtered 
antimicrobial octa-SAFP candidates have at most two AAs aligned to 
one of the known AMP sequences, with the similarity level mostly below 
30% (Fig. 4b). Figure 4c illustrates the difference of the TransSAFP 
prediction scores with and without the N-terminal moiety inputs for 
the selected octapeptide sequences. The positive score increments 
from octanoic acid (abbreviated as C8), lauric acid (C12), hexadecanoic 
acid (C16), 4-biphenylacetic acid (BIP) and 1-pyrenebutyric acid (PYR) 
modifications in this sequence space indicate that these N-terminal 
modifications are more likely to enhance the antimicrobial activity 
of the dissimilarity-filtered octapeptide sequences, which aligns with 
higher portions occupied by these N-terminal modifications in the 
region of high TransSAFP scores (>0.99; Fig. 4d).

We further compared the properties of predicted octa-SAFP can-
didates with known AMP sequences, including charge, hydrophobicity, 
hydrophobic ratio, aromaticity and AA composition (Fig. 4e–i). The 
analysis was carried out based on the different N-terminal groups, 
including alkanes (C8, C12 and C16), aromatic rings (phenylacetic 
acid, PHE; BIP; diphenylacetic acid, DIP; 2-naphthaleneacetic acid, 
NAP; 9-anthracenecarboxylic acid, ANT; and PYR) and cycloalkanes 
(cyclopropylacetic acid, C-PRO and cyclohexaneacetic acid, C-HEX). 
The discovered octa-SAFPs have similar charges to the known AMPs 
from the training dataset, but the charges of octa-SAFPs with alkane 
and aromatic N-terminal modifications are slightly lower than those 
in other groups (Fig. 4e). The hydrophobicity of 20 common AAs and 
11 N-terminal modifications was re-quantified by the Kovacs scale29,30 
(Supplementary Table 12) to calculate the hydrophobicity of peptides, 
as shown in Fig. 4f. A notable increase in the hydrophobicity of SAFPs 
is observed and is related to the presence of the N-terminal modifi-
cations. Alkane showed the greatest increase, followed by aromatic 
rings, and cycloalkane showed the least increase. Due to the consider-
able hydrophobicity provided by the N-terminal modifications, the 
hydrophobic ratio of SAFPs has notably decreased compared to known 
AMPs (Fig. 4g). Interestingly, TransSAFP increases the aromaticity in 
predicted octa-SAFPs (Fig. 4h). Regarding the changes in the AA com-
positions, we found that the introduction of hydrophobic N-terminal 
modifications can substantially reduce the hydrophobicity of the AA 
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Fig. 4 | Prediction and analysis of SAFP in entire octapeptide library.  
a, TransSAFP can screen the entire octapeptide library in four days. b, Predicted 
octa-SAFP candidates exhibit low similarity to known AMP sequences from the 
training dataset. The dashed line represents the median. c, Distribution of the 
changes in prediction scores (Δ) with various N-terminal moieties. The colour 
bar represents the ratio values. Among these N-terminal moieties, C8, C12, C16, 
BIP and PYR exhibit a higher likelihood of enhancing the antimicrobial activity of 
the octapeptides. d, Distribution of different N-terminal moieties in the octa-
SAFP dataset, with prediction values ranging from 0.99 to 1.00. C8, C12 and C16 
constitute the top proportions, followed by BIP, PYR and ANT.  

e–h, Physicochemical properties of octa-SAFP candidates and known AMP 
sequences from the training dataset, including charge (e), hydrophobicity 
(f), hydrophobic ratio (g) and aromaticity (h). The dotted lines represent the 
quartiles and the dashed lines represent the median. i, AA composition of 
predicted octa-SAFP and known AMP sequences from the training dataset. 
Panels e–i reveal that the predicted octa-SAFPs exhibit notable differences in 
physicochemical properties and AA composition compared to known AMP 
sequences. The label ‘alkane N’ includes the N-terminal modifications C8, C12 and 
C16; ‘aromatic ring N’ includes PHE, BIP, DIP, NAP, ANT and PYR; and ‘cycloalkane 
N’ includes C-PRO and C-HEX.
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sequences (Supplementary Fig. 17). Besides, the ratios of K and R in the 
predicted octa-SAFP candidates decrease, while a substantial increase 
in H occurs, resulting in a similar charge distribution compared to 
known AMP sequences (Fig. 4i). Due to the presence of hydrophobic 
N-terminal modifications in SAFPs, the ratio of hydrophobic AAs (such 
as F, G, I and L) decreases notably, leading to a lower hydrophobic 
ratio of SAFP sequences. The increase in the ratio of H and Y causes 
an elevation in aromaticity. Compared to octa-SAFPs with N-terminal 
modifications of alkanes or aromatic rings, octa-SAFPs with cycloal-
kane require more hydrophobic AAs such as M and W, as well as the 
positively charged R, to facilitate antimicrobial activity. We synthesized 
a batch of octa-SAFPs (sequences are listed in Supplementary Table 5), 
tested their antimicrobial activity against the four aforenoted pathogen 
strains and found that octa-p2 exhibited the best antimicrobial activity 
(Supplementary Table 13). The successful identification of multiple 
antimicrobial octa-SAFPs with almost no similarity to previously known 
AMP sequences validates the TransSAFP-guided discovery of new 
SAFPs with non-natural AAs. This promises compelling opportunities 
to develop next-generation antimicrobial therapeutic agents in an 
unexplored sequence space.

In vivo toxicity assay
Prior to evaluating the therapeutic efficiency of identified SAFPs, we 
first systematically examined their biosafety (Supplementary Fig. 18a). 
In blood biochemical analysis (Supplementary Fig. 18b), the uric acid 
(UA) of p45-treated mice was significantly higher than in the PBS group, 
while other parameters (alanine transaminase, aspartate aminotrans-
ferase, blood urea nitrogen and creatinine) remained relatively stable 
upon intraperitoneal injection treatments. However, haematological 
evaluation (Supplementary Fig. 18c) exhibited no significant difference 
in haematological indicators, including red blood cell, mean corpus-
cular volume, platelet, white blood cell, neutrophil and monocyte 
measures. Haematoxylin and eosin (H&E) staining results suggested 
that no notable abnormalities are observed from the heart, liver, spleen, 
lung, kidney, small intestine or colon (Supplementary Fig. 19). In the 
subsequent five days, the body weight (Supplementary Fig. 20a) of 
the mice decreased slightly after the treatment of ciprofloxacin or two 
SAFPs on day 2. Mice treated with ciprofloxacin and octa-p2 began to 
recover within a day, while p45-treated mice showed a slower recovery. 
However, on day 7, the body weight of all groups returned to normal 
levels. The chronic toxicity from assessment experiments (day 7) sug-
gested that no statistical difference exists in blood biochemical or 
haematological indicators among treated mice groups (Supplementary 
Fig. 20b,c). Simultaneously, no apparent abnormalities were shown in 
tissue slices (Supplementary Fig. 21). These results reveal that the two 
identified SAFPs could result in a slight decrease in body weight, and 
p45 would cause a burden to the kidneys of mice. Nevertheless, these 
effects are temporally transient, and relevant indicators will revert 
within five days, indicating no long-term damage was caused by the 
two identified SAFPs.

In vivo therapeutic efficacy on intestinal infection
The therapeutic efficacies of SAFPs via intraperitoneal injection were 
subjected to in vivo assessment in an acute intestinal infection mouse 
model developed by S. Typhimurium (Fig. 5a). The body weight of the 
infected mice treated with PBS consistently decreased (Fig. 5b), and 
some reached the threshold of losing 20% (humane end-point) of ini-
tial body weight after day 5. Treatment with p45 could prevent weight 
loss, similar to ciprofloxacin, and both of them ensured a high survival 
rate of infected mice compared to the PBS group (Fig. 5b,c). The p45 
therapy leads to a decrease of Salmonella burden in faeces, the small 
intestine and the colon, with efficacy comparable to that of ciprofloxa-
cin (Fig. 5e–g). The S. Typhimurium infection also inflicted severe dam-
age upon the intestinal tissues, including a significant decrease in the 
density and height and the swelling of small intestinal villi (Fig. 5d,h). 
The numbers of goblet cells on the villi of the small intestine in the 
p45-treated and ciprofloxacin-treated groups are notably higher than 
that in the PBS group, as illustrated in periodic acid Schiff (PAS) and 
Alcian blue PAS (AB-PAS) stained images (Fig. 5h). The thickening of 
the muscular layer, structural disorders and inflammatory region in 
the colon were observed in the PBS group (Fig. 5i). By contrast, these 
pathological symptoms were greatly alleviated upon treatment of p45 
or ciprofloxacin.

To investigate the changes in the relative abundance of the gut 
microbiome induced by p45 and ciprofloxacin treatments, we further 
profiled the average bacterial taxonomy using 16S ribosomal RNA 
(rRNA) analysis. The unweighted pair group method with arithmetic 
mean tree plot (Supplementary Fig. 22a) showed that most p45 and 
ciprofloxacin samples were grouped together, and most PBS samples 
were clustered into another clade. Furthermore, the diversity of the 
bacterial community between different treated mice was also analysed 
by weighted UniFrac principal coordinates analysis (Supplementary 
Fig. 22b) and non-metric multidimensional scaling (Supplementary 
Fig. 22c). Both of these also showed that mice treated with p45 distrib-
uted densely and can be distinguished from the PBS group, while the 
ciprofloxacin-treated group exhibits widely scattered points in both 
analysis plots, indicating that p45 treatment could lead to more consist-
ent gut microbiota, as compared to ciprofloxacin. Average bacterial 
taxonomic profiling plots provide the top ten relative abundance at 
different levels. The p45 and ciprofloxacin treatments greatly increase 
the Firmicutes and Bacteroidota phyla compared to the PBS group 
(Supplementary Fig. 22d). The abundance of the Clostridia and Bacte-
roidia classes increased notably after treatment with p45 or ciprofloxa-
cin compared to the PBS-treated mice (Supplementary Fig. 22e). The 
Clostridia class is involved in processes that maintain gut homeostasis. 
For example, the Clostridium species produce short-chain fatty acids, 
which are beneficial for colonic health31. Members of the Bacteroidia 
class play vital roles in the metabolization of oligosaccharides and 
polysaccharides, thus supplying nutrition not only to the host but also 
to other commensal microbiota32. Notably, ciprofloxacin treatments 
increased the abundance of the Bacilli class, which contains some 

Fig. 5 | Therapeutic efficacy of p45 against intestinal infection. a, The protocol 
of in vivo therapeutic assay, including streptomycin pretreatment, Salmonella 
infection, treatments, body weight monitoring and final assessment. b, Body 
weight change of mice groups treated with PBS, p45 and ciprofloxacin (Cip). 
Compared to the control group (PBS treatment), p45 and Cip treatment 
effectively prevented weight loss. The bars shown are mean ± s.d. (n = 5 
biologically independent samples). c, Both p45 and Cip effectively ensured the 
survival rate of mice with acute intestinal infection caused by S. Typhimurium 
(n = 5 biologically independent samples). d, Average villus height measured from 
H&E-stained images of small intestines from different groups. The bars shown 
are mean ± s.d. The difference between PBS and other treatments is determined 
by the one-way analysis of variance (ANOVA) test. e–g, S. Typhimurium quantity 
in the faeces (e), small intestine (f) and colon (g) of infected mice with different 
treatments. In e–g, five horizontal solid lines in each dataset represent the 
following, from top to bottom: maximum (the top short line), first quartile (the 

top of the box), median (the line within the box), third quartile (the bottom of 
the box) and minimum (the bottom short line). The difference between PBS and 
other treatments is determined by the one-way ANOVA test (n = 5 biologically 
independent samples). h, Sections of small intestine tissue from infected mice 
with different treatments. The first row shows H&E staining; scale bar, 100 μm. 
The second row shows a zoomed-in view of the red dashed boxes; scale bar, 
50 μm. The third row shows PAS staining; scale bar, 100 μm. The fourth row 
shows AB-PAS staining; scale bar, 100 μm. The heights of villi were measured as 
the length of the black arrows. The swollen areas of the villi are marked with red 
arrows. i, Sections of colon tissue from infected mice with different treatments. 
The first row shows H&E staining; scale bar, 100 μm. The second row shows 
PAS staining; scale bar, 100 μm. The third row shows AB-PAS staining; scale bar, 
100 μm. The inflammatory regions are marked with red arrows. Panels h and i 
reveal that mice treated with p45 and Cip showed better small intestine and colon 
conditions compared to the PBS group.
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Fig. 6 | Antimicrobial mechanisms and biofilm eradication of p45.  
a–c, The zeta potential (a), diameter distribution (b) and CD spectrum (c) of lipid 
vesicles (DOPC/DOPG = 7:3) before and after treatment with p45, revealing the 
interaction between lipid vesicles and p45. d, The sequence and helical wheel of 
p45. e, The p45 exhibits a strong self-assembly ability with a CAC value of 6 μg ml–1.  
kcps, kilo counts per second. f, TEM examination of p45 (10 × MIC); scale bar, 
500 nm. g,h, TEM images of S. Typhimurium cells (g) and cells treated with p45 
(50 × MIC) for 15 min (h); scale bars, 500 nm. i, Zoomed-in view marked by the 
red dashed box in h; scale bar, 100 nm. Self-assemblies are marked by red arrows. 
Panels g–i reveal that p45 assemblies target and bind to the bacterial membrane 
surface. j, Illustration of antimicrobial mechanism of p45. k, The p45 disrupts 
the integrity of the outer membrane of S. Typhimurium, leading to an increase 

in NPN signal. a.u., arbitrary units. l, Compared to Cip, p45 does not induce S. 
Typhimurium resistance within 30 passages. MIC0 is the initial MIC value, while 
MICn is that value after n passages, as described in more detail in the Methods.  
m, Relative mass and crystal-violet-stained images (inset) of S. Typhimurium 
biofilm treated with PBS (control), Cip (50 × MIC) and p45 (50 × MIC). The bars 
shown are mean ± s.d. The difference between PBS and other treatments are 
determined by the one-way ANOVA test. n, CLSM images (scale bar, 100 μm) and 
spreading plate results (scale bar, 1 cm) of established S. Typhimurium biofilm 
treated with PBS (control), Cip and p45. Panels m and n indicate that p45 exhibits 
a better biofilm eradication ability compared to Cip. In a, e, k and m, the bars 
shown are mean ± s.d. (n = 3 independent replicates).
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opportunistic pathogens. However, such side effects are not found 
in mice treated with p45 (ref. 33). At the family level, the variance of 
abundance in Lachnospiraceae and Muribaculaceae is not notable (Sup-
plementary Fig. 22f). However, the abundance of the Proteobacteria 
phylum (Supplementary Fig. 22g), Gammaproteobacteria class (Sup-
plementary Fig. 22h) and Enterobacteriaceae family (Supplementary 
Fig. 22i) containing several Salmonella species is suppressed after treat-
ment with p45 or ciprofloxacin, indicating that p45 exhibits a similar 
therapeutic efficacy to ciprofloxacin in eliminating in vivo bacteria.

Furthermore, experiments were also carried out to evaluate the 
in vivo therapeutic efficacy of octa-p2. The results show that treat-
ment of octa-p2 could effectively prevent weight loss and eradicate S. 
Typhimurium, ensuring the survival of infected mice (Supplementary 
Fig. 23a–c). Upon treatment, infection symptoms were alleviated, 
including the abnormal status of small intestinal villi and the disordered 
structure of the colon (Supplementary Fig. 23d,e). From 16S rRNA 
analysis at the class level (Supplementary Fig. 23f), treatment with 
octa-p2 reduced the abundance of the Gammaproteobacteria class 
and promoted the population of the Clostridia class.

Antimicrobial mechanism of SAFP p45
To unravel the antimicrobial mechanism of the identified SAFP (p45), 
we employed experiments at both the membrane and cellular levels. 
A lipid bilayer model was constructed by small unilamellar vesicles 
(DOPC/DOPG = 7:3; DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine; 
DOPG, 1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium 
salt)) to investigate the interaction between p45 and lipid membranes. 
After interaction with p45 at 10 × MIC, the values of the zeta potential 
and diameter of small unilamellar vesicles increased (Fig. 6a,b), indi-
cating the binding of p45 to the small unilamellar vesicle membranes. 
CD results (Fig. 6c and Supplementary Table 6) showed that p45 itself 
exhibited a mixed secondary structure in PBS buffer, which transformed 
into a helix-dominated and more amphiphilic structure (Fig. 6d) after 
interaction with small unilamellar vesicles.

The CAC of p45 was determined using DLS technology, and its CAC 
value of 6 μg ml–1 (3 μM) is equivalent to its MIC against S. Typhimurium 
(Fig. 6e). Therefore, p45 has already undergone self-assembly at an 
antimicrobial concentration. Moreover, when the p45 assemblies are 
disturbed at a concentration higher than its MIC, p45 loses its antimi-
crobial activity (Supplementary Fig. 16e), which indicates that p45 first 
forms assemblies before binding to the bacterial membranes and exert-
ing antimicrobial effects. Transmission electron microscopy (TEM; 
Fig. 6f) and atomic force microscopy (AFM; Supplementary Fig. 24b) 
images indicate that p45 self-assembled to form a nanofibrous aggre-
gation. To mitigate the potential interferences in the TEM and AFM 
techniques, including uranyl acetate negative staining and dry environ-
ment, we further used DLS to investigate the correlation function of 
p45 assemblies in solution (Supplementary Fig. 24a), which indicates 
the formation of a nanostructure of p45. Additionally, the cryo-EM 
image of p45 reveals a consistent morphology to that observed from 
TEM and AFM (Supplementary Fig. 24c). The cell membrane of healthy 
S. Typhimurium exhibited an intact structure (Fig. 6g). After a 15 min 
interaction with p45, TEM results (Fig. 6h,i) revealed the binding of p45 
assemblies to the bacterial membrane, which is consistent with the 
results from the small unilamellar vesicle experiments. After 1 h treat-
ment, the bacterial membrane was disrupted and the cytoplasm leaked, 
resulting in the death of bacteria (Supplementary Fig. 25a,b). To further 
investigate the antimicrobial mode of p45 assemblies in living bacte-
rial cells, we used 3,3′-dipropylthiadicarbocyanine iodide (DiSC3(5)) 
and N-phenyl-1-naphthylamine (NPN) fluorescence dyes to examine 
the changes in bacterial membrane depolarization and permeability. 
In the DiSC3(5) assay (Supplementary Fig. 26), unlike the well-known 
depolarizing peptide antibiotic polymyxin B34, no increase of DiSC3(5) 
fluorescence was observed upon the treatment of p45, indicating that 
the antimicrobial mechanism of p45 is independent of depolarization 

to the membrane. NPN experiments showed the fluorescent signal 
increased substantially after contact with p45 (Fig. 6k), indicating the 
permeability change of the membrane. Overall, these results imply 
that p45 can self-assemble into an aggregation below its MIC and the 
aggregation subsequently binds to the bacterial membrane, leading 
to a decrease in permeability and disruption in the integrity of the 
bacterial membrane (Fig. 6j).

Development of resistance and biofilm eradication
The development of resistance experiment (Fig. 6l) indicates that  
S. Typhimurium did not develop acquired resistance against p45 after 
30 passages. By contrast, the MIC of ciprofloxacin increased by 256 
times compared to the initial value.

The biofilm eradication assays show that the established biofilm 
was almost entirely eradicated (Fig. 6m) after a 4 h treatment of p45 
(50 × MIC), while approximately 90% of the biofilm remained upon treat-
ment with ciprofloxacin. Confocal laser scanning microscopy (CLSM) 
images by live/dead assay of the biofilm provide a direct observation 
of the viability of bacteria in the biofilm upon the treatment with p45 
or ciprofloxacin. The results suggest (Fig. 6n) that ciprofloxacin can 
eliminate only a small portion of bacteria in the biofilm. By sharp con-
trast, CLSM images and spreading plate results indicate that almost all 
bacteria within the biofilm treated with p45 have died. Since biofilm 
formation is an important factor in antibiotic resistance and infec-
tion recurrence, our results suggest that p45 has advantages in these  
aspects.

Outlook
Peptide materials with diverse bio-functionalities have potential appli-
cations in various fields. However, the lack of a computational tool 
for predicting the functional activities of SAFPs dramatically limits 
the development of new SAFPs. This work proposed a DL-assisted 
pipeline (TransSAFP) for designing N-terminal-modified SAFPs with 
antimicrobial function. We show that, with appropriate augmentation 
schemes in the transfer learning phase, the TransSAFP model accurately 
predicts the antimicrobial activities of SAFPs by learning on sparsely 
labelled data in the extended chemical-sequence space. TransSAFP 
demonstrates an effective scheme for antimicrobial SAFP discovery, as 
verified by MIC assays. The identified SAFPs strongly self-assemble into 
diverse morphologies with various secondary structures. N-terminal 
modifications enhance self-assembly via hydrogen bonds, hydrophobic 
interactions and π–π stacking, and stronger self-assembly generally 
leads to greater antimicrobial activity.

The identified SAFPs (p45 and octa-p2) demonstrated good bio-
compatibility in vitro and in vivo, showing effective therapeutic effi-
cacy against acute intestinal bacterial infections. Importantly, the 
SAFPs were able to restore the intestinal environment and maintain 
the gut microbiota, comparable to the effects of the antibiotic cipro-
floxacin. The p45 exhibits a strong self-assembling ability and adopts 
a helix-dominated secondary structure upon interacting with the 
bacterial membrane. The nanofibrous aggregation of p45 attached to 
the membrane and permeabilized it without leading to depolarization. 
With such an antimicrobial mechanism, p45 exhibited an excellent 
biofilm eradication ability and broad-spectrum antimicrobial activity 
without inducing drug resistance, demonstrating greater potential in 
clinical treatments for bacterial infections. To conclude, we developed 
a transfer learning DL strategy (TransSAFP) for the de novo design of 
functional peptide-based materials. The TransSAFP-assisted workflow 
presented here can effectively be adapted to design other SAFP materi-
als with various bio-functionalities.
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Methods
Public AMP dataset
The public AMP sequences with lengths ranging from 6 to 15 AAs were 
collected from the public DBAASP database20. The non-AMP sequences 
were obtained from the UniProt databank35 and our in-house experimen-
tal data. For the UniProt databank, we retrieved all entries satisfying the 
same length criterion and removed those labelled by at least one of the 
following keywords: antimicrobial, antibiotic, antiviral or antifungal. 
Moreover, we also added 33 sequences that have been validated to be 
non-AMPs from our previous efforts. Both datasets were filtered to 
exclude duplications, non-canonical AAs and terminal modifications, 
which resulted in 3,174 AMP sequences and 62,611 non-AMP sequences.

SAFP dataset
We collected 106 sequences composed of 6–15 AAs with C8-, C12- or 
C16-functionalized N termini from the DBAASP database20. Among 
the collected public AMP data, the majority of the MIC values are less 
than or equal to 100 μg ml–1 (Supplementary Fig. 27), which is set as the 
threshold for AMPs. According to our MIC threshold for AMPs, 93 of 
these peptides were active AMPs and 13 were inactive. Moreover, we 
chemically synthesized 204 peptides with additional N-terminal groups 
(C8, C12, C16, PHE, BIP, DIP, NAP, ANT, PYR, C-PRO or C-HEX) to enrich 
the SAFP dataset. The antimicrobial activity of synthesized SAFPs 
was evaluated by MIC measurements against E. coli and S. aureus. It is 
essential that both antimicrobially active and inactive labels be present 
in both the training and the validation datasets used in subsequent DL 
training. Of our in-house synthesized peptides, 62 were antimicrobial 
SAFPs and 142 were non-antimicrobial SAFPs. By concatenating the 
public-sourced sequences and our in-house efforts, we obtained a small 
dataset (310 sequences in total) with equal numbers of antimicrobial 
SAFPs and non-antimicrobial SAFPs.

TransSAFP pretrain module selection
We split the native peptide sequences into training, validation and test 
subsets at a 6:2:2 ratio in a label-stratified manner. We trained ten 
candidate architectures on the training and validation subsets: convo-
lutional neural networks with one-dimensional (CNN(1D)) and 
two-dimensional (CNN(2D)) convolutional filters36, recurrent neural 
networks with long short-term memory (LSTM)37 or gated recurrent 
unit (GRU)38 recurrent blocks, bidirectional recurrent neural networks 
with LSTM or GRU blocks (BiLSTM or BiGRU)39, bidirectional recurrent 
neural networks with LSTM or GRU blocks and Bahdanau-style additive 
attention alignments (BiLSTM(A) or BiGRU(A))40 and multi-head 
self-attention models with or without a transformer-style cross atten-
tion layer (MHA(T) or MHA(E))21. All pretraining candidates were para-
metrized to minimize the objective function ℒℒℒ:

ℒℒℒ = ytrue log( ypredict) + (1 − ytrue) log(1 − ypredict)

+‖xembedding − xreconstruct‖
2
2

where ypredict and ytrue are the antimicrobial labels from the model predic-
tion and the ground truth, respectively; xembedding and xreconstruct are the 
embedded and the reconstructed sequence features, repectively. We 
note that the preceding cross-entropy terms penalize the classification 
loss and the squared norm metric penalizes the reconstruction loss. The 
final pretraining architecture (MHA(T)) was selected by its competitive 
performance metrics on the test set and relatively efficient inference cost. 
The final pretraining module was obtained from retraining the selected 
model using an 8:2 label-stratified training–validation split on all avail-
able peptide sequences. The parameters in the pretraining module were 
frozen from gradient propagations in subsequent training processes.

TransSAFP transfer learning module selection
The dataset for the downstream transfer learning is merged from the 
public peptide and SAFP datasets. To ensure similar distributions for 

N-terminal modifications and antimicrobial activities in the training 
and the validation sets, we split the dataset at an 8:2 ratio with regard 
to each N-terminal type and the active/inactive antimicrobial labels. 
We note that at least one antimicrobially active entry and one inactive 
entry were included in the validation set for each N-terminal type. The 
downstream transfer learning module was constructed as a 
self-attention block appended to the latent output of the pretraining 
module. The sequence-immutable noise augmentation scheme is 
introduced as follows. We denote X(x) as a state function that maps the 
input AA tokens (xAA) of the pretraining network to the identity indices, 
iAA, of the twenty AAs, X: xAA → iAA. Here we implemented the X as a 
Euclidean distance metric, iAA = argmin‖x − xAA‖2, which tessellates the 
pretraining input space into twenty Voronoi cells anchored by the 
discrete embeddings of AAs (xAA). The sequence-immutable noise 
augmentation can then be defined on the noise tensor (ε) applied to 
each AA embedding subjected to the equality constraint: 
X(xAA + ε) ≡ X(xAA). To keep the noised sequence embeddings tractable, 
we tabulated for each xAA the minimum distances to any other AA 
embeddings by which the uniform distribution of the noise tensors 
(for this AA type) was bounded. We note that such noise tensor sam-
pling automatically satisfies the sequence-immutable constraints at 
negligible computational cost. The extended input of N-terminal labels 
was introduced by an additional embedding entry, which is concate-
nated to the pretraining embedding. The transfer learning module was 

biased during training by assigning sample weights w j =
n(x)

n( j)n(xj)
 on each 

sample xj with the jth type of N-terminal modification. Here, n(x) refers 
to the total number of sequences in the training–validation set, n(j) is 
the total number of N-terminal types and n(xj) is the number of 
sequences with the jth type of N-terminal modification. The transfer 
learning module was trained to minimize the binary cross-entropy loss 
on the antimicrobially active/inactive classifications.

De novo screening of octa-SAFPs
We partitioned the entire octa-SAFP library (11 × 208 sequences) into 
twenty batches and distributed in parallel the screening task onto 
twenty Nvidia 1080 Ti graphics processing units (GPUs); the TransSAFP 
prediction took ~100 h in total. We retained all octa-SAFPs with predic-
tion scores of >0.99 as potent candidates, which were then filtered for 
dissimilarity with the known AMP sequences on a per sequence basis. 
We refer to the known AMP sequences by combining the antimicro-
bial SAFPs verified by experimental reports and all native peptide 
sequences with any N-terminal modification that were predicted by the 
TransSAFP model to be antimicrobial (scores > 0.90). For a candidate 
SAFP sequence, its similarity to the known sequences is determined 
from the following procedure. First we aligned the candidate sequence 
to each of the known peptide sequences from the training dataset using 
the Needleman–Wunsch algorithm41. Then we computed the fraction 
of aligned residues to the length of the known sequence. After looping 
for all known peptide sequences, we took the maximum value of this 
fraction to indicate the similarity of the octa-SAFP sequences to known 
peptide sequences.

Computational details
All DL models were implemented using TensorFlow v.2.10 (ref. 42) 
on Nvidia A40 GPUs. All training sets were partitioned into learn-
ing batches of 32 entries. All models were trained using the adap-
tive momentum (AdaM) optimizer43 at a constant 0.0005 learning 
rate through 1,000 epochs, under an early-stopping schedule that 
monitors and retrieves the model parameters producing the low-
est validation loss. The umap-learn library was used for analysing 
the latent representations in the neural networks22. The scikit-learn 
library (v.1.3.0) was employed for evaluating the model performance 
metrics44. The Biopython library (v.1.80) was adopted for peptide 
sequence analysis45.
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Materials
AAs with an Fmoc protected group and 2-(1H-benzotriazole-1-yl)-
1,1,3,3-tetramethyluronium hexafluorophosphate were purchased 
from GL Biochem Ltd. Dichloromethane was provided by Shanghai 
Titan Scientific. The N,N-dimethylformamide was sourced from 
J&K Scientific. Piperidine was provide by Sinopharm Chemical Rea-
gent. The N,N-diisopropylethylamine was obtained from Shanghai 
Aladdin Biochemical Technology. The 3-(4,5-dimethyl-2-thiazolyl)-
2,5-diphenyl-2H-tetrazolium bromide was sourced from Sanggon Bio-
tech. The C8 and C-HEX were sourced from Shanhai Haohong Scientific. 
The C12 was purchased from Shaihai Yuanye Bio-Technology. The C16 
was provided by Anhui Zesheng Technology. The BIP, NAP, PYR, NPN 
and DiSC3(5) were sourced from Shanghai Aladdin Biochemical Technol-
ogy. The DIP, ANT and C-PRO were purchased from Shanghai Macklin 
Biochemical Co. The PHE was sourced from the Shanghai Guoyao group 
company. The DOPC and DOPG were sourced from AVT (Shanghai) 
Pharmaceutical Tech.

Bacteria strains, culture conditions and MIC assays
E. coli ATCC 25922, S. aureus ATCC 25923, E. faecium ATCC 51559, E. fae-
calis ATCC 51575 and E. faecalis ATCC 51299 were purchased from the 
ATCC. E. coli BNCC 186732, E. cancerogenus BNCC 363037, S. epidemidis 
BNCC 330867 and A. baumannii BNCC 254392 were provided by BNCC.  
L. monocytogenes CMCC 54004 was provided by CMCC. S. aureus USA 
300, S. Typhimurium SL1344, K. pneumoniae BNCC 102997 and P. aer-
uginosa BNCC 360085 were obtained from our frozen stock collection. 
All bacteria strains were cultured in brain heart infusion broth (BHIB) at 
37 °C. MIC values of bacteria strains mentioned above were determined 
by the microdilution method. Peptides were dissolved in PBS buffer 
(137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4 and 1.9 mM KH2PO4) and pre-
pared in 96-well plates by a serial twofold dilution, leading to 100 μl of 
solution in each well. Overnight-cultured bacterial solution was diluted 
and added into prepared 96-well plates, giving 200 μl in each well, with 
bacterial concentration of 106 CFU ml–1. The wells without bacteria and 
peptides were set as positive controls, and the wells with only bacteria 
were employed as negative controls. Each measurement contained at 
least three replicates. These arrangements were applied in each plate. 
The plates were placed in an incubator with a setting of 37 °C. After 24 h, 
MIC values (the lowest concentrations that completely inhibit visible 
growth) were directly determined by the naked eye.

In vivo therapeutic efficacy assays
All in vivo experiments were carried out according to institutional 
guidelines, and corresponding experiments received approval from 
the Institutional Animal Care and Use Committee (IACUC) of Westlake 
University (IACUC animal protocol no. 22-025-WHM). The mice were 
kept in specific-pathogen-free conditions with a 12 h light/12 h dark 
cycle. The temperature was maintained between 20 and 26 °C, and 
the humidity was kept between 40 and 70%. Balb/c mice (female, 8 
weeks old) were first subjected to 4 h food and water deprivation, after 
which the mice were treated with 20 mg of streptomycin (Fig. 4a). After 
20 h, food and water were restricted again for 4 h followed by 100 μl 
of S. Typhimurium solution (109 CFU ml–1 in PBS) being administered 
to mice via oral gavage. Then, a period of two days was provided for 
colonization of S. Typhimurium in the intestines. After establishment 
of the infection model, each group of mice was treated with 100 μl 
of peptides or ciprofloxacin solutions via intraperitoneal injection 
with a dose of 30 mg kg–1, two times, on days 3 and 4. On day 8, fresh 
faeces, small intestines and colons were collected from each group and 
homogenized in PBS buffer, after which these solutions were diluted 
and spread onto Brain Heart Infusion (BHI) agar plates separately in 
order to quantitatively measure the amount of S. Typhimurium. Small 
intestine and colon were collected and their histological statuses were 
analysed using H&E, PAS and AB-PAS staining. The imaging data were 
collected by CaseViewer (v.2.4.0).Throughout the entire assay, the body 

weights of mice were recorded in an Excel file every day. If the body 
weight of a mouse decreased by more than 20%, it was considered to 
have reached the humane end-point for euthanasia.

CD spectroscopy
CD measurements were performed using the CD spectrometer Chi-
rascan V100 (Applied Photophysics). Sample solution with a certain 
concentration was loaded in a rectangular quartz cuvette with a 2 mm 
path length. CD data were collected by Pro-Data Viewer (v.4.2.0) at 
room temperature with a range of wavelengths from 190 to 260 nm.

Lipid membrane model
DOPC and DOPG were used to mimic bacterial inner membranes with 
a molar ratio of 7:3. The lipids were dissolved in chloroform and mixed 
with the ratio. After the evaporation of chloroform, the dry lipid mix-
ture was dissolved by PBS buffer. Then the lipid solution was extruded 
31 times through a membrane with a pore diameter of 100 nm by an 
Avanti Polar Lipids extruder. Finally, prepared lipid vesicle solutions 
were collected for other experiments.

Zeta potential measurements
The zeta potential variation of lipid vesicles upon treatment of peptides 
was measured by a ZetaPlus instrument (BI-200SM, Brookhaven Instru-
ment). The data were collected by BIC Particles Solutions (v.3.6.0). 
A 2 ml sample solution was loaded in a cell by mixing 1 ml of vesicle 
solution at 1.5 mg ml–1 with 1 ml of peptide solution at twofold certain 
concentration. Each sample rested for 180 s and was measured three 
times to get the average values.

DLS measurements
The hydrodynamic radius variation of lipid vesicles upon treatment of 
peptides was measured by DLS using a wide-angle dynamic light scat-
tering instrument (BI-200SM, Brookhaven Instrument). The data were 
collected by BIC Particles Solutions (v.3.6.0). The cell contained 2 ml 
sample solution mixed with 1 ml of vesicle solution at 1.5 mg ml–1 and 
1 ml of peptide solution at twofold certain concentration. The cell was 
equilibrated for 180 s before each measurement and the hydrodynamic 
radius was obtained by averaging three runs.

CAC measurements
The CAC values of peptides were determined by DLS using a wide-angle 
dynamic light scattering instrument (BI-200SM, Brookhaven Instru-
ment). DLS was used to measure the intensity of the peptide solu-
tion at different concentrations, and the intensity was obtained by 
averaging three runs. When the concentration is below the CAC, the 
intensity changes negligibly with increasing concentration. Once the 
concentration reaches the CAC, peptide monomers start to assemble 
and the scattering intensity of the assemblies increases exponentially 
as a function of concentration increase.

Membrane permeabilization assay
The NPN assay was employed to evaluate the permeability variation 
of the bacterial membrane. This lipophilic dye exhibits strong fluo-
rescence when in contact with a bacteria membrane that is lipidic 
but shows week fluorescence under aqueous conditions. As NPN is an 
impermeable dye, it migrates into the membrane when the membrane 
is damaged (Supplementary Fig. 28). S. Typhimurium cells were first 
cultured in BHIB to an optical density at 595 nm (OD595) of 0.8. The 
bacterial solution was centrifuged at 7,000 rpm (9,860g) for 5 min, 
and then the supernatants were removed and bacteria were resus-
pended by PBS buffer. This washing step was repeated three times to 
get rid of the culture medium. Next, 50 μl NPN solution (40 μM) was 
added into 50 μl of bacteria solution in a 96-well plate. Then 100 μl 
of peptide solution at two times a certain concentration was added 
into each well, while three wells that were treated with 100 μl of PBS 
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were set as background measurements. The fluorescence (excitation 
wavelength (λex) = 350 nm, emission wavelength (λem) = 420 nm) was 
recorded by a plate reader (Varioskan LUX, Thermo Scientific) over 
time until it reached the plateau value, and the data were collected 
by Skanlt RE (v.7.0.2).

Resistance development assay
The development of resistance of S. Typhimurium against peptides or 
ciprofloxacin was monitored for 30 passage in series. In the beginning, 
the initial MICs of the peptides or ciprofloxacin against S. typhimurium 
were measured and defined as MIC0 (initial passage). Then, the bacteria 
in sub-MIC wells were collected and recultured, which is the first pas-
sage. The MIC against S. Typhimurium (first passage) was defined as 
MIC1. This process was repeated 30 times, and MICn/MIC0 (n = 0–30) 
was calculated to investigate the development of resistance with an 
increasing number of passages.

Biofilm formation and eradication test
S. Typhimurium was first cultured in a flat-bottom 96-well plate for three 
days. During this period, the culture medium was removed and the biofilm 
at the bottom was washed by PBS buffer three times every 24 h to remove 
planktonic bacterial cells. Well-grown biofilm was treated with 200 μl of 
peptide solution at a certain concentration for 4 h, after which wells were 
washed by PBS to remove peptides and planktonic bacterial cells. Simul-
taneously, biofilm with treatment of PBS was set as a negative control, 
and empty wells were defined as a positive control. Some 100 μl of 0.1% 
crystal violet solution was added into each well to stain the remaining 
biofilm for 10 min, and then residual crystal violet solution was washed 
away three times by PBS buffer. Next, 95% ethanol was employed to dis-
solve the stain biofilm, and this process continued for 10 min. The OD595 
was measured by a plate reader (Varioskan LUX, Thermo  
Scientific). Relative biofilm mass was calculated by the following  
function: Relative biofilm mass = (OD −ODpositive control)/ (ODnegative control  
−ODpositive control).

Confocal images of biofilm
S. Typhimurium biofilm was formed in a confocal dish (diameter of the 
glass bottom is 15 mm). The same steps from the biofilm eradication 
test were carried out, including washing and treatment of peptides or 
ciprofloxacin. A LIVE/DEAD BacLight bacterial viability kit was obtained 
from Thermo Fisher Scientific. SYTO9 stain, due to its ability to pen-
etrate the membrane, could stain live and dead bacterial cells (green), 
while propidium iodide (PI), a membrane-impermeable dye, could 
stain only dead cells (red). The mixture of SYTO9 and PI with a ratio 
of 1:1 was added to treated biofilm at a working concentration of 0.3% 
(v/v). After 15 min of treatment, confocal images were taken by a laser 
scanning confocal microscope (inverted, LSM 980 with Airyscan). The 
imaging data were collected by Zen (v.2.3).

Morphologies of peptides by TEM
Peptides were prepared in PBS buffer with certain concentrations. 
Some 20 μl of peptide solution was dropped onto the front side of 
copper mesh. After 30 s, excess liquid was removed using filter papers. 
Uranyl acetate solution was then added to stain the peptides for 30 s, 
and excess liquid was removed using filter papers. The morphologies of 
peptides were examined with TEM (Talos L120C G2, Thermo Scientific) 
at an accelerating voltage of 120 kV.

Morphologies of peptides by cryo-EM
Peptides were prepared in PBS buffer at 1,000 μg ml–1 and a 3.5 μl ali-
quot of the solution was loaded onto glow-discharged holey carbon 
grids. The grids were blotted for 3 s and then plugged frozen in liquid 
nitrogen using Vitrobot Mark IV (Thermo Fisher Scientific) at 100% 
humidity and 8 °C. Cryo-EM data were then collected on a Glacios 
(Thermo Fisher Scientific) operating at 200 kV.

Morphologies of bacterial cells by TEM
S. Typhimurium solution was first centrifuged and washed by PBS 
three times and then treated with peptide solution at a certain 
concentration for different durations. The liquid was removed after 
10 min of centrifugation (7,000 rpm/9,860g), and the remaining 
samples were treated with stationary liquid (pH 7.2, 2 vol% paraform-
aldehyde and 2.5 vol% glutaraldehyde) overnight. The sample was 
then washed by 0.1 M phosphate/cacodylate buffer (pH 7.2), three 
times. Subsequently, the sample was treated with osmic acid (1 wt%) 
and uranyl acetate (1 wt%) separately for 1 h. After every step, the 
sample was washed by double distilled H2O, three times. Then, the 
sample was dehydrated with 30, 50, 70, 95 and 100 vol% ethanol/
water and acetone with each reaction lasting for 10 min. Next, the 
sample was treated with a series mixture of acetone and 812 resin (2:1, 
1:2) for 30 min each, and immersed in pure resin overnight. After-
ward, sections of sample were prepared and stained. The morpholo-
gies of S. Typhimurium upon different treatments were observed 
by TEM (Talos L120C G2, Thermo Scientific) at an accelerating  
voltage of 80 kV.

Statistics and reproducibility
The method of statistical significance and the number of repetitions 
for the experiments (n) are described in the figure legends. For rep-
resentative images (such as TEM, cryo-EM, AFM and CLSM images), 
experiments were performed three times independently with similar 
results.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings are available within the main text 
and the Supplementary Information and can be obtained from the cor-
responding authors upon request. The positive pretrained dataset was 
collected from the DBAASP database (https://dbaasp.org/search). The 
negative pretrained dataset was collected from the UniProt database 
(http://www.uniprot.org). Datasets and codes for the model are accessi-
ble via Science Data Bank at https://doi.org/10.57760/sciencedb.19186 
(ref. 46). Source data are provided with this paper.

Code availability
The TransSAFP model can be accessed via GitHub at https://github.
com/LiuHuayang27/TransSAFP (ref. 47), which is archived at the 
Science Data Bank at https://doi.org/10.57760/sciencedb.19186  
(ref. 46).
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