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Deep Learning Empowers the Discovery of Self-Assembling
Peptides with Over 10 Trillion Sequences

Jiaqi Wang, Zihan Liu, Shuang Zhao, Tengyan Xu, Huaimin Wang,* Stan Z. Li,*
and Wenbin Li*

Self-assembling of peptides is essential for a variety of biological and medical
applications. However, it is challenging to investigate the self-assembling
properties of peptides within the complete sequence space due to the
enormous sequence quantities. Here, it is demonstrated that a
transformer-based deep learning model is effective in predicting the
aggregation propensity (AP) of peptide systems, even for decapeptide and
mixed-pentapeptide systems with over 10 trillion sequence quantities. Based
on the predicted AP values, not only the aggregation laws for designing
self-assembling peptides are derived, but the transferability relation among
the APs of pentapeptides, decapeptides, and mixed pentapeptides is also
revealed, leading to discoveries of self-assembling peptides by concatenating
or mixing, as consolidated by experiments. This deep learning approach
enables speedy, accurate, and thorough search and design of self-assembling
peptides within the complete sequence space of oligopeptides, advancing
peptide science by inspiring new biological and medical applications.

1. Introduction

Peptides, which are short chains consisting of normally less
than 50 amino acids, have been paid tremendous attention
due to their facile synthesis, inherent biodegradability, and bio-
compatibility, as well as rich chemical diversity for producing
stable nanostructures with fluorescence, [1] semiconductivity,[2]

and piezoelectricity.[3,4] Albeit the extensive chemical diversity
(> 2050), nowadays, only an infinitesimal portion of peptides
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have been found to self-assemble into
ordered structures,[5–8] due to the lack
of efficient approaches for predicting
their self-assembling propensity, which
is a prerequisite for producing desir-
able supramolecular morphologies and
subsequent industrial applications (e.g.,
tissue engineering, drug delivery, and
biosensing).[9] In addition, self-assembling
of peptides has been widely involved in
certain biological processes[10–12](e.g., cell
extension and contraction, movement
of endocytic vesicles, intercellular trans-
port of bacterial and viral pathogen) and
protein misfolding diseases[13–15] (e.g.,
Alzheimer’s disease, Parkinson’s disease,
Type II diabetes). Therefore, elucidating
the relationship between the position/type
of constituent amino acids and self-
assembling of peptides is vital for inspiring
new applications and unraveling the mys-
teries of various biological processes and
diseases.

Over the past decades, self-assembling peptides have been
mostly discovered by human expertise combining wet-lab ex-
periments and inspired by biological systems. For instance,
KLVFF[16] and NFGAIL[17] are derived from fragments of amy-
loid protein A𝛽16-20 and human islet amyloid polypeptide, respec-
tively. However, experimentation normally spans a long period
of time, and human expertise is often biased toward high 𝛽-sheet
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Figure 1. Workflow of coupled CGMD-deep learning approach for effective discovery of self-assembling oligopeptides. a) All-atom (AA) models with
𝛽-strand and 𝛼-helix conformation, and coarse-grained (CG) model with 𝛼-helix conformation (used in this work), of an example pentapeptide PYYAL.
The CG model approximates 3–5, mostly 4 atoms into one bead, aiming to accelerate simulation, as illustrated in dashed circles with BB representing a
backbone bead and SC representing a side chain bead (Table S1, Supporting Information). b) Generation of aggregation propensity (AP) as training data
by coarse-grained molecular dynamics (CGMD). AP is defined as the ratio of accessible surface area at the beginning (SASAinitial) and end (SASAfinal)
of a CGMD simulation. An equilibration time of 125 ns is sufficient for achieving a reasonable AP (i.e., close to convergence), and it is therefore chosen
as a trade-off between simulation cost and accuracy. c) Architecture of transformer-based regression network, comprising two parts, i.e., Transformer
encoder and Multilayer Perceptron decoder, for extracting sequence representation and predicting AP, respectively.

propensity amino acids with moderate to high hydrophobicity,[18]

preventing a systematic and thorough search of the enormous
sequence space of peptides. Therefore, an efficient and unbiased
approach to discovering self-assembling peptides is imperative.

In recent years, computational screening has been adopted for
designing self-assembling peptides. In 2015, Frederix et al.[19]

screened the aggregation propensity (AP, a prerequisite of self-
assembling; the definition of AP is given in Figure 1a and also in
Methods) of the complete sequence space of tripeptide employ-
ing coarse-grained molecular dynamics (CGMD) and generated
design rules for promoting self-assembly. However, whether the
design rules are transferable to peptides with more than three
amino acids is dubious. CGMD also has its own limitation: as the
length of peptides increases, the total number of peptides in se-
quence space will increase exponentially. Consequently, it will be
an extremely expensive and intractable task to simply implement
CGMD to thoroughly screen the sequence space of peptides con-
taining more than four amino acids (which contain more than
20[4] sequence quantities, e.g., 3.2 million for pentapeptides).

To overcome these challenges, emerging techniques employ-
ing artificial intelligence (AI) come into use.[20–24] Batra et al.[18]

adopted an AI approach to predict the AP of pentapeptides
based on the training data generated by CGMD, using the al-
gorithm of random forest and Monte Carlo tree search. In this

coupled CGMD-AI approach, the quantity of training dataset
is critical for effective training of the AI models, especially for
high-dimensional input data space distributing over a complex
manifold.[25] It can be assumed that for decapeptides and mixed
pentapeptide systems with sequence quantity over one trillion,
one would require much more data for effective training than
that of pentapeptides with 3.2 million sequence quantities. How-
ever, it is expensive and time-consuming to perform brute-force
CGMD simulations to generate a huge quantity of training data.
Consequently, the traditional machine learning approaches (ran-
dom forest, support vector machine, etc.) would gradually lose
their capability, similar to the challenge encountered in brute-
force CGMD. Therefore, to the best of the authors’ knowledge,
investigation of the sequence space of peptides containing more
than five amino acids has never been reported.

Aiming to further push the limit of AP prediction to oligopep-
tide systems with an enormous sequence space (>10 trillion),
we adopt a coupled CGMD-deep learning approach, with CGMD
for generating the training data of AP (Figure 1a,b) and the deep-
learning algorithm of Transformer-based regression network
(TRN) for AP prediction (Figure 1c). This Transformer architec-
ture has been validated for its effectiveness on various sequence
data, such as in natural language processing[26] and protein
structure prediction.[27,28] TRN employs a self-attention module
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Figure 2. Performance of deep-learning and non-deep-learning models. a) Performance of deep-learning TRN models trained with 1000, 5000, and 8000
data and Combo model trained with 54 000 data. b) Performance comparison between deep-learning TRN model and non-deep learning models of
support vector machine (SVM), random forest (RF), nearest neighbor (NN), Bayesian ridge (BR), and linear regression (LR), trained with 8000 data,
for pentapeptides (Penta), decapeptides (Deca), and mixed pentapeptide (Mixedpenta) systems. c) Comparison between CGMD-simulated AP (APsim)
and predicted AP (APprd) by the Combo model, as well as APsim and reported AP (APrep). A mean absolute error (MAE) of 0.0504 and 0.1585 is achieved
for APsim versus APprd, and APsim versus APrep, respectively. d) Correlation and error ratio between APprd and APsim. APprd is predicted by TRN models
trained with 8000 data for pentapeptides, decapeptides, and mixed pentapeptides, and with 54 000 data for the Combo model.

in Transformer[29] to extract sequence representations and a
nonlinear Multilayer Perceptron (MLP) for accurate prediction
of AP. Compared to recurrent models such as Recurrent Neural
Network[30] and Long Short-Term Memory,[31] Transformer[29]

is more effective in capturing long-range semantic associa-
tions, which renders it superior when applied to longer peptide
sequences.

After testing the effects of secondary structure and simula-
tion duration on aggregation (see Methods and Supplementary
Materials SD1), we have demonstrated the prediction capabil-
ity of TRN in pentapeptides, decapeptides, and mixed pentapep-
tide systems. Furthermore, we deduce the aggregation laws of
pentapeptides with respect to the type and position of 20 natu-
ral amino acids. Last, but not the least, the transferability rela-
tion among the APs of pentapeptides, decapeptides, and mixed
pentapeptide systems is revealed, inspiring the design of self-
assembling systems through the concatenation or mixing of pep-
tides. It should be noted that in addition to AP, the morphology
of aggregates is also critical in determining the properties of the
resulting peptide-based materials, which will be investigated in
the near future but not included in this research.

2. Results and Discussion

2.1. Performance of AI Models

During model training, we identify the effect of the number
of training data on model performance (Figure 2a) and illus-
trate the superiority of the deep learning algorithm of TRN

to five non-deep learning algorithms including support vec-
tor machine (SVM),[32] random forest (RF),[33] nearest neighbor
(NN),[34] Bayesian ridge (BR),[35] and linear regression (LR)[36]

(Figure 2b). The mean absolute error (MAE) and coefficient of
determination[35] (R2) are adopted for assessing the performance
of AI models, which are averaged results over ten parallel exper-
iments (the exact values of MAE and R2 are shown in Table S2,
Supporting Information).

As expected, the performance of TRN models improves as the
size of the training dataset increases (Figure 2a), and notably, the
TRN has achieved an R2 over 0.85 with only 8000 training data
for the sequence space of decapeptide with over 10 trillion pos-
sibilities, proving the effectiveness of TRN in predicting the self-
assembly properties of peptides with enormous sequence space.
With the same number of training data, the model performance
of decapeptides and mixed pentapeptides is slightly reduced com-
pared to that of pentapeptides (less than 8% with 8000 training
data), which is intrinsically caused by the exponentially increased
complexity of the sequence space of these two systems. In addi-
tion to separate models, we also train a model using combined AP
data (#54 000 in quantity) of pentapeptides to decapeptides (i.e.,
penta-, hexa-, hepta-, octa-, nona-, and decapeptides), termed as
Combo model. It achieves the optimal performance with an MAE
of 0.05 and R2 of 0.92, capable of predicting the AP of the com-
plete sequence space of oligopeptides regardless of the peptide
length.

The deep learning algorithm of TRN exhibits superiority to all
five non-deep learning algorithms (Figure 2b). For instance, the
R2 of TRN trained with 8000 data for decapeptide is 0.85, while
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Figure 3. Aggregation laws of pentapeptides. a) Relation between logP’ and APprd’ within the complete sequence space of pentapeptides (3.2 million
in quantity). The APprd’ is divided into four ranges as low-A, medium-B, medium-high-C, and high-D for more convenient and detailed analysis, i.e., A
= APprd’∈ [0.00, 0.25), B = APprd’∈ [0.25, 0.50), C = APprd’∈ [0.50, 0.75), and D = APprd’∈ [0.75, 1.00]. The number of pentapeptides in each range is
270459, 703411, 1821793, and 404337. Color of blue to yellow indicates the number density. b,c) Violin distribution of APprd’ and logP’ within four ranges
of APprd’. d) Percentage of amino acids summed over five positions (It should be noted that the term “five positions” should not be confused with the
group number 1–5), within four APprd’ ranges.

the counterpart of SVM and RF is 0.76 (TRN achieves 11.8%
improvement) and 0.55 (TRN achieves 54.5% improvement), re-
spectively. This indicates that TRN requires much less training
data to reach a satisfactory level of accuracy than the non-deep
learning algorithms, holding promises for predicting the AP of
polypeptides and proteins.

Comparing the CGMD-simulated AP (APsim) to deep-learning
predicted AP (APprd) by Combo model as well as to the reported
AP (APrep) values of 26 pentapeptides that have been experimen-
tally and computationally studied by Batra et al.[18] (associated
details can be found in Table SD1, Supporting Information) but
never been involved in our model training or testing, the APsim
versus APprd and APsim versus APrep are all in reasonable agree-
ment, with an MAE of 0.0504 and 0.1585, respectively (Figure 2c),
demonstrating the accuracy of our predictions with respect to
ground-truth CGMD simulations.

The error of APprd mainly lies at two ends of APsim distribu-
tion, especially at the low APsim range due to scarce sampling
(Figure 2d). As APsim increases to 1.5, the error ratio (|APprd-
APsim|/APsim×100%) remains ≈5%. The limited reliability of
APprd at a low APsim range would have minimal effect on the se-
lection of self-assembling peptides mostly with medium to high
AP values (AP > 1.5).

2.2. Effect of Hydrophilicity on Aggregation

It has been found that, in addition to AP, hydrophilicity (logP)
also plays a crucial role in peptide aggregation and hydrogel
formation.[37] We hereby present a complete picture of APprd’ ver-
sus logP’ (the prime symbol ‘ denotes normalization between 0
and 1) for pentapeptides with 3.2 million sequence possibilities,

as shown in Figure 3a–c. Among 3.2 million pentapeptides, more
than 2.9 million (>90%) exhibit medium to high APprd’ (range
B to C, Figure 3a), suggesting significant potential for achieving
aggregates and self-assemblies. As APprd’ increases from low to
high (range A to D, Figure 3a), the median value of logP’ con-
secutively decreases (Figure 3c), indicating that aggregates tend
to form with stronger hydrophobicity. However, intermediately
hydrophilic or amphiphilic pentapeptides (logP’ ∈ [0.25, 0.75])
exhibit a wide range of APprd’ from 0 to 1 (Figure 3a,c), similar to
observations in tripeptides.[19] In summary, APprd’ only exhibits
a weak correlation with logP’, evidencing that hydrophobicity is
not the sole contributor to aggregation and highlighting the im-
portance of unbiased screening through CGMD-AI without as-
sumptions of aggregating mechanisms.

To account for the influence of both AP and logP in the self-
assembly of peptides, a hydrophilicity-corrected score APH

[19]

has been developed to introduce bias to soluble peptides (we
use APH

2-0.5 to denote the parameters in our APH calculation.
See Equation 2 in Experimental Section). In addition, in this
work, we propose another optimized score APHC by penalizing
the contribution of logP at both soluble and insoluble ranges
(Equation 4; SD2, Supporting Information). The relations of
APH

2-0.5′- logP’ and APHC’- logP’ are presented in Figures
S1a–c,S2a–c (Supporting Information). The corrected scores
(APH

2-0.5′ and APHC’) significantly penalize APprd’ within the
high hydrophobicity range (range D, Figure 3a) and favor pep-
tides with medium hydrophilicity (range H in Figure S1a–c and
range M in Figure S2a–c, Supporting Information). This indi-
cates that the corrected scores APH

2-0.5′ and APHC’ are capable of
distinguishing between aggregation and precipitation, beneficial
for selecting self-assembling peptide candidates for hydrogel
formation. Comparing APH

2-0.5′ and APHC’, the former assigns
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a high score to peptides mostly with logP’ close to 0.25 (range
H, Figure S1c, Supporting Information), while the latter assigns
high scores to peptides with logP’ close to 0.5 (range M, Figure
S2c, Supporting Information), better matching the distribution
of logP’ among aggregating peptides in experiment (Figure
SD5a, Supporting Information). In summary, APHC’ shows
improved accuracy over the existing score of APH

2-0.5′, further
minimizing the self-assembling peptides library by reducing
bias to both hydrophilic and hydrophobic peptides.

2.3. Aggregation Laws

In order to derive aggregation laws, i.e., the effects of position and
type of amino acids on peptide aggregation, we analyze the total
percentage of the 20 amino acids summed over five positions,
as well as the percentage in each position, within four ranges of
APprd’ (Figure 3d; Figure S3, Supporting Information), APH

2-0.5′

(Figures S1d,S4, Supporting Information), and APHC’ (Figures
S2d,S5, Supporting Information). Based on their contribution to
APprd’, these 20 amino acids are divided into five groups, each
indicated by an Arabic number between 1 and 5 (Figure 3d). Re-
garding APH

2-0.5′ and APHC’, we use the same grouping approach
for the convenience of direct comparison.

Group 1 contains aromatic amino acids F, Y, and W (Group
1, Figure 3d), which contributes most to aggregation through 𝜋-
stacking[38] (an example is shown in Figure S6a, Supporting In-
formation) and cooperatively hydrophobicity. Comparing the per-
centage of F, Y, and W calculated based on APH

2-0.5′ and APHC’
to that of APprd’, the contribution of W has been brought down
at a high range (Group 1, Figures S1d,S2d, Supporting Infor-
mation) due to stronger hydrophobicity. This is consistent with
our experimental findings that the pentapeptide WWWWW pre-
cipitates in water solvent at 25 mm forming suspension, while
FFFFF and YYYYY form hydrogels with nanosheet and nanofiber
structures(Figure S7, Supporting Information). F, Y, and W are
found favorable in positions 3–5 (especially 3rd position) for pro-
moting self-assembling (range D, H, and M in Group 1, Figures
S3–S5, Supporting Information, respectively). We propose that
at the third position, the aromatic amino acids should have more
degree of freedom to drive self-assembling by 𝜋–𝜋 interactions.
When the aromatic amino acids are located at the C-terminus
(second favored position), they act as strong hydrogen acceptors
(preset in Martini2 force field, see Table S1, Supporting Informa-
tion) and would possibly form specific structures with other pep-
tides in the solvent, increasing the distance between the benzene
rings and thus reduce the 𝜋-𝜋 interactions. The aromatic residues
act as both hydrogen acceptor and donor when they are located
in the third position and becomes more challenging to interact
with other peptides through hydrogen bonding due to steric hin-
drance, and therefore no specific structures can be formed, but
the benzene rings will then have more freedom to interact with
each other and promote aggregations.

In Group 2, I, L, and V carry hydrophobic sides, and C shares
a structure with the amino acid V carrying a -SH group (Group
2, Figure 3d). C, I, L, and V promote aggregation due to the
hydrophobic repulsion existing between side chains and water
(Figure S6b, Supporting Information). However, the percentage

of I, L, and V contained in peptides within high-score ranges
of APH

2-0.5′ (Group 2, Figure S1d, Supporting Information) and
APHC’ (Group 2, Figure S2d, Supporting Information) has been
penalized due to that peptides containing those amino acids tend
to have high hydrophobicity. C, I, L, and V are mostly found oc-
cupying positions close to two termini of peptides, especially N-
terminus in aggregated peptides (range D, H, and M in Group 2,
Figures S3–S5, Supporting Information).

H, S, and T amino acids (Group 3. Figure 3d) have polariz-
able side chains and thus H-, S-, and T-contained peptide sys-
tems could promote aggregation through hydrogen bonding (a
type of dipole force, Figure S6c, Supporting Information). How-
ever, within the high-score range (Group 3, Figure 3d; Figures
S1d,S2d, Supporting Information), the percentage of H, S, and
T decreases mainly due to the fact that the dipole-dipole interac-
tion has a minor contribution than 𝜋-stacking to aggregation. It
is observed that S and T prefer to occupy N- and C-termini, with
the N-terminus bearing a higher preference, while H tends to
occupy positions away from two termini (range D, H, and M in
Group 3, Figures S3–S5, Supporting Information). The exposure
of S and T at two termini should be conducive to the formation
of specific packing between peptides through hydrogen bonding,
such as polar zippers[39] between neighboring 𝛽-sheets.

M and P amino acids are almost equally found across four
APprd’ ranges, with a slight increase at high APprd’ range (Group
4, Figure 3d), while the APH

2-0.5′ and APHC’ significantly increase
the percentage of P at high range and decrease that of M (Group
4, Figures S1d,S2d, Supporting Information). P is found to fa-
vor position 1 and position 2 (range D, H, and M in Group 4,
Figures S3–S5, Supporting Information), similar to the reported
finding that P prefers position 1 in tripeptide for promoting
aggregation,[19] due to its unique kink conformation (Figure S6d,
Supporting Information) allowing better packing of the short
peptides.[40]

The amino acids in group 5 are ones not favorable for aggrega-
tion on a statistical level based on APprd’ value, which can also be
divided into three subgroups: 1) negatively charged D and E, and
positively charged K and R, 2) N and Q with strong polarity, 3) A
and G with no side chain in coarse-grained representation (Table
S1, Supporting Information). Different from APprd’, APH

2-0.5′ and
APHC’ significantly increase the percentage of charged amino
acids at the high range (Group 5, Figures S1d,S2d, Supporting
Information). Negatively charged amino acids D and E are fa-
vored in positions close to C-terminus, while positively charged
R and K prefer positions close to N-terminus for promoting ag-
gregation (range D, H, and M in Group 5, Figures S3–S5, Sup-
porting Information). D and E residues at C-terminus (as well
as R and K at N-terminus) could produce a doubly charged head
group and promote self-assembly through the attraction of oppo-
site charges and formation of salt bridges, driving intermolecu-
lar alignment. Examining the average distance between the neg-
atively charged amino acid E and nearest neighbor N-terminus
(positively charged) of amino acid I with respect to the pentapep-
tide IPWCE (rnear), the distance rnear (= 5.7 Å) in the aggregate is
smaller than that of the pair in the peptide sequence itself (rself
= 6.4 Å), demonstrating that E attracts the N-terminus of other
peptides and forms salt bridges (Figure S6e, Supporting Informa-
tion). This finding is also consistent with that of Frederix, et al.[19]
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Table 1. APprd and logP information of five groups of pentapeptides, decapeptides, and mixed pentapeptides, with APdeca larger than 1.5 while APdeca-
APavepen larger than 0.4.

Pen1| Pen2 APpen1 APpen2 APavepen logPpen1 logPpen2 APdeca APmixpen APavepen-APdeca APavepen-APmixpen

NRMMR|
DMGID

1.150 1.144 1.147 0.474 0.597 1.659 1.612 −0.512 −0.465

DMTAL|
IAGAK

1.155 1.031 1.093 0.451 0.498 1.542 1.366 −0.449 −0.273

RLNCK|
ADMGE

1.167 1.125 1.146 0.511 0.653 1.591 1.606 −0.445 −0.460

LRLRL|
IQDEC

1.480 1.103 1.292 0.360 0.606 1.731 1.735 −0.440 −0.443

IVNRR|
EEEQS

1.174 1.035 1.105 0.466 0.788 1.531 1.490 −0.427 −0.385

N and Q are barely found in high levels of APH
2-0.5′ and APHC’

(Group 5, Figures S1d,S2d, Supporting Information), due to the
strong hydrophilicity of those two amino acids prefer to induce
solvation. Compared with other amino acids, A and G are not
favored for the formation of aggregates due to the lack of domi-
nating interactions.

2.4. Transferability of AP Values

Aiming to discover self-assembling peptide systems through the
concatenation or mixing of pentapeptides, we have studied the
transferability relation among 1 million APs of decapeptides
(APdeca), APs of mixed pentapeptide systems (APmixpen), and AP of
averaged pentapeptides (APavepen) (Figure S8a,b, Supporting In-
formation). To consolidate our findings here, we have also stud-
ied the transferability relation of 2253 groups of APavepen and
APdeca (APmixpen), using CGMD-generated data instead of pre-
dicted APs (Figure S9a,b, Supporting Information).

APavepen and APdeca (APmixpen) generally exhibit a linear corre-
lation (Figure S8a,b, Supporting Information) with a mean abso-
lute error of 0.077 (0.086), indicating that most decapeptides and
pentapeptides (mixed pentapeptide systems) obey the same ag-
gregation laws. Tthus the AP of concatenated or mixed systems
can be roughly estimated by averaging the AP of the constituent
peptides.

Examining the distribution of AP difference (APdeca-APavepen
and APmixpen-APavepen, Figure S8c,d, Supporting Information), it
is found that more than 94.2% APmixpen is larger than APavepen
with a median value of 0.064 and a maximum AP difference
of 0.549 and 0.634 is achieved regarding APdeca-APavepen and
APmixpen-APavepen, respectively. In addition, more than 500 of
APdeca-APavepen and 2457 of APmixpen-APavepen are found larger
than 0.4, proving that aggregation can be promoted by con-
catenating or mixing peptides. The APdeca-APavepen and APmixpen-
APavepen exhibit a positive correlation (Figure S8e, Supporting
Information), demonstrating similar dominant mechanisms in
promoting self-assembly in decapeptides and mixed pentapep-
tide systems. We reach the same conclusions from the CGMD-
generated AP data (Figure S9, Supporting Information), proving
the validity of the predicted results.

Table 1 lists five peptide groups with APdeca–APavepen larger
than 0.4 and APdeca larger than 1.5. For all those five decapep-

tides and mixed pentapeptides systems, they are all concatenated
or mixed by corresponding pentapeptide subgroups (Pen1 and
Pen2), and at least one of the corresponding pentapeptide sub-
group does not exhibit strong aggregation propensity. Examining
the sequence feature of five decapeptides and mixed pentapep-
tide systems, the two pentapeptide subgroups comprise different
types of charge (blue: +e; yellow: −e). It is reasonable to deduce
that the Coulombic attraction significantly promotes aggregation
in such concatenated or mixed systems, possibly leading to or-
dered self-assembled structures. Examining the sequences of the
top 200 APmixpen-APavepen from the prediction (Table S3, Support-
ing Information) and the top 100 APmixpen-APavepen from CGMD
simulation (Table S4, Supporting Information), the same mech-
anism (i.e., Columbic interaction) for promoting aggregation in
decapeptides and mixed pentapeptide systems can be inferred.

To consolidate the findings from the predictions, we per-
form 1.25 μs CGMD simulations on the aforementioned five
groups of pentapeptides and mixed pentapeptides, and 6.25 μs
simulations on decapeptides (Figure 4a; Figure S10, Support-
ing Information), to achieve reliable morphologies by eliminat-
ing the non-convergence effect (the morphologies simulated at
125 ns is shown in Figure S11, Supporting Information). The
long-duration CGMD simulation generates results consistent
with the predictions that the subgroup pentapeptides do not
exhibit a strong propensity for aggregation while the concate-
nated decapeptides and mixed pentapeptides demonstrate strong
aggregation. In addition, wet-lab experiments are performed
on pentapeptides NRMMR and DMGID, decapeptide NRMM-
RDMGID, and mixed pentapeptide system NRMMR+DMGID,
which are chemically synthesized at pH 7 and characterized by
TEM after 48 h of standing, for examining the degree of aggre-
gation as well as morphologies (Figure 4f). As the TEM images
show, NRMMR and DMGID do not exhibit clear aggregation
after 48 h, while NRMMRDMGID and NRMMR+DMGID ex-
hibit vesicle and amorphous aggregated morphologies, respec-
tively. This vesicle structure has also been directly observed
in 6.25 μs CGMD simulations (third column Figure 4a), prov-
ing the predictive power of CGMD simulation in morphol-
ogy as well. Vesicle structures can be employed for drug deliv-
ery in future development on medical applications, and simi-
lar vesicle structures could be possibly achieved by the sequence
candidates of decapeptides provided (Tables S3,S4, Supporting
Information).

Adv. Sci. 2023, 10, 2301544 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301544 (6 of 10)
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Figure 4. Computational and experimental morphologies of pentapeptides, decapeptides, and mixed pentapeptides. a) Computational morphologies
of pentapeptides NRMMR, DMGID (simulated for 1.25 μs), decapeptide NRMMRDMGID (simulated for 6.25 μs), and mixed pentapeptide systems of
NRMMR and DMGID (simulated for 1.25 μs). Color blue indicates backbone beads while red indicates side chain beads. b) TEM images with photographs
of pentapeptides NRMMR, DMGID, decapeptide NRMMRDMGID, and mixed pentapeptide systems of NRMMR and DMGID in water solvent. The
concentration of each peptide is 25 mmol L−1.

3. Conclusion

With the approach of coupled CGMD and deep learning, we
have successfully predicted the AP of pentapeptides, decapep-
tides, and mixed pentapeptides, enabling the derivation of aggre-
gation laws and transferability study for accelerated discovery and
design of self-assembling peptide systems and possible applica-
tions.

The prediction accuracy of AI models trained with TRN all
reaches an excellent level to above 85% with only 8000 training
data, even with a sequence space of over 10 trillion possibilities,
superior to traditional non-deep learning algorithms (e.g., SVM,
RF, NN, BR, and LR). A combo model trained with 54000 AP data
achieves desirable accuracy (i.e., R2 = 0.92) and transferability in
AP prediction (i.e., capable of predicting AP of any pentapeptide
to decapeptide, regardless of peptide length).

The predicted AP provides a complete picture of the relation
between AP and logP, manifesting that only a weak correlation
exists between the two quantities, which illustrates the necessity
of complete and unbiased AP prediction using AI. Based on the
predicted AP values (APprd) and hydrophilicity-corrected APH

2-0.5

and APHC, aggregation laws regarding 20 natural amino acids
are derived. For promoting aggregation, aromatic amino acids
(F, W, and Y) and ones carrying hydrophobic side chains (I, L,
and V) should be placed at positions close to the C-terminus.
In addition, negatively charged amino acids (D, E) and positively
charged amino acids (R, K) prefer positions close to the C- and
N-terminus, respectively. The polar amino acids S and T can pro-
mote aggregation when located at N-terminus. Amino acid C also
plays an important role when located at two termini, and the con-
tribution of P also stands out when located at N-terminus.

The transferability relation between APavepen and APdeca as well
as between APavepen and APmixpen reveals that, while most de-
capeptides and mixed pentapeptides systems obey the same ag-
gregation rules as mono-component pentapeptide systems, the
concatenation or mixing of pentapeptides could produce a new

possibility for achieving self-assemblies due to the Columbic in-
teractions that exist between the pentapeptide subgroups, as con-
firmed by both simulation and experiments.

The above findings advance peptide science by demonstrating
the effectiveness of the TRN network in predicting the enormous
sequence space of oligopeptides, and by discovering the aggrega-
tion laws and transferability relation between peptide subgroups
and concatenated/mixed peptide systems. The discovery of self-
assembling peptides/peptide mixtures with sequence quantities
over 10 trillion is significantly accelerated, expediting the de-
velopment of biological and medical applications that employs
short peptide building blocks as key structural and functional el-
ements.

4. Experimental Section
Evaluation of Secondary Structure and Simulation Duration: Previous

works assumed identical conformation (i.e., 𝛽-strand) for every peptide
in simulations [18,19] ,while longer peptides such as decapeptides might
adopt different secondary structures and exert influence on aggregation.
Therefore, the total energy of a single pentapeptide/decapeptide with 𝛽-
strand/𝛼-helix conformation in water at 300 K was first evaluated. The
total energy was a sum of bonded (i.e., bond, dihedral, proper, and im-
proper interactions) and non-bonded interactions (Lennard–Jones and
Columbic interactions) while excluding kinetic energy. 𝛽-strand and 𝛼-helix
were the two most common secondary structures, and the Ramachandran
angles[41] of each were set as ϕ = −119°, 𝜓 = 113° and ϕ = −57°, and
𝜓 = −47°, respectively, which are the dominant Ramachandran angles
found in experiments.[42] Forty thousand parallel coarse-grained molec-
ular dynamics (CGMD) simulations at 300 K for 5 00 000 steps with a
time step of 25 fs (i.e., 12.5 ns) were conducted, each containing one
𝛽-strand/𝛼-helix pentapeptide/decapeptide solvated in a 5 nm box con-
taining 1045 water beads. The CGMD simulation was performed with the
open-source GROMACS package (version 5.1.5)[43] and Martini force field
(version 2.2).[44–46] The total energy was output every 100 steps, and the
final total energy for each peptide was obtained through averaging over
the last 2 50 000 steps (from 6.25 to 12.5 ns, Figure SD1, Supporting In-
formation). The relevant discussion of the effect of secondary structure as
well as simulation duration is included in SD1 (Supporting Information).

Adv. Sci. 2023, 10, 2301544 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301544 (7 of 10)
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Generation of the AP Training Data with CGMD: First, Latin Hypercube
sampling[47] was adopted to sample 8000 sequences from the complete
sequence space of pentapeptide, aiming to collect uniform training sam-
ples. The selected peptide sequences were then fed to CGMD simulations
for the generation of AP, which were performed with the open-source pack-
age GROMACS[43] and Martini force field version 2.2.[44–46] This Martini
force field had been widely adopted in the study of peptide/protein self-
assembling and the resulting new physics suggested had been confirmed
by experiments.[18,19,48–51] It was thus expected that the level of aggrega-
tion could be well represented in CGMD simulations.

The all-atom pentapeptide structures were prepared based on
CHARMM36,[52] and then coarse-grained using the Python script
martinize.py.[44,45] In total, 150 coarse-grained pentapeptides (or 81 de-
capeptides) were solvated randomly in a 15 nm × 15 nm × 15 nm box
with 28 400 water beads (water density ≈1 g cm−3), resulting in a sol-
vent concentration of 0.074 mol L−1 for pentapeptides (0.040 mol L−1

for decapeptides), close to those in the experiment. The charge of the
solution was maintained neutral by adding a proper amount of Na+ or
Cl−. The whole system was then energy-minimized using the steepest de-
scent algorithm,[53] until the maximum force on each atom was less than
20 kJ mol−1 nm−1. Subsequently, the system was passed to an equilibra-
tion run for 5 × 106 steps, with a time step of 25 fs, resulting in a total sim-
ulation time of 125 ns (or “effective time” 600 ns). The temperature and
pressure during the equilibration were controlled through the Berendsen
algorithm at 300 K and 1 bar, respectively. The AP value was calculated at
the last step (see Scoring methods). In AP transferability study between
pentapeptides, decapeptides, and mixed pentapeptides, 1.25 μs (or “ef-
fective time” 6 μs due to the acceleration of coarse-graining of four atoms
into one bead) for the selected five groups of pentapeptides and mixed
pentapeptides and 6.25 μs (or “effective time” 25 μs) for the decapeptides
and for achieving reliable morphologies, were run.

Scoring Methods: It was declared that there were three types of AP
values in this work, which were AI predicted value APprd, hydrophilicity-
corrected score APH

2-0.5, and corrected APH
2-0.5 score APHC (see details

in SD2, Supporting Information). Their normalized counterparts (between
0 and 1) APprd’, APH

2-0.5′, and APHC’ were utilized for analysis throughout
the Main Body.

The AP is defined as the ratio between the accessible surface areas at
the beginning (SASAinitial) and end of (SASAfinal) a CGMD simulation,[54]

as shown in Equation 1:

AP =
SASAinitial

SASAfinal
(1)

Based on the CGMD-generated AP and AI model, the AP values of re-
maining pentapeptides were predicted, thus APprd shared the same mean-
ing as AP.

The normalized APprd (i.e., APprd’) and hydrophilicity logP (i.e.,
logP’) were then employed to calculate the hydrophilicity-corrected score
APH

2-0.5 by[19]:

AP2−0.5
H = APprd

′2 × logP′0.5 (2)

The logP is defined as the sum of the Wimley–White whole-residue
hydrophilicities,[55] as in Equation 3:

logP =
n∑

i = 1

ΔGwoct,i (3)

Here, n denotes the number of residues in one peptide (for example, n
equals to 5 for pentapeptides). ΔGwoct,i (in kcal mol−1) represents the free
energy of transfer from water to n-octanol for the i-th residue.

To alleviate the bias of the score function APH
2-0.5 to soluble (as well

as insoluble) peptides,[19] a penalty factor acting on logP’ is included, as
defined by:

APHC = AP2−0.5
H × e

− (log P′−𝜇)2

2𝜎2 (4)

Here, μ (= 0.4113) and 𝜎2 (= 0.0657) are the average and variance of the
logP’ of aggregated peptides among the 12 pentapeptides which have been
experimentally validated for aggregation (Table SD1, Supporting Informa-
tion).

AI Model Training: The AP predictive models were trained with
a Transformer-based regression network, which consisted of a Trans-
former encoder and a downstream Multilayer Perceptron (MLP) decoder
(Figure 1c). The transformer encoder was decomposed into two parts: in-
put embedding and positional encoding and encoder block. Input embed-
ding mapped discrete words (i.e., amino acids) in a peptide sequence into
a continuous space of 512 dimensions. Compared with one-hot encod-
ing, the word embedding was capable of learning the embedding of each
amino acid based on the variability between amino acids, contributing to
more accurate predictions. The positional encoding embedded the posi-
tion information of words into the outputs of input embedding. The en-
coder block contained a self-attention network and a feed-forward neural
network, each containing a residual connection and a layer normalization.
The number of heads was set as 8, and the dimensions of K, Q, and V as 64
(hyperparameters of the self-attention module). The dimension of hidden
layers in a feed-forward neural network was set to 2048. There were a total
of 6 encoder blocks concatenated to perform the extraction of sequence
representations.

The transformer encoder outputs a hidden layer representation of the
peptide sequence, which was dimensionally reduced five times in the MLP
as [512, 256, 64, 32, and 1] after being compressed into a 1D vector.
Each MLP layer contained a linear layer responsible for the dimensional-
ity reduction mapping and a nonlinear activation function of Leaky ReLU
responsible for providing nonlinearity. Batch normalization and dropout
were used as tricks to optimize model training. AP value was then the out-
put of the last layer of the MLP decoder.

The training procedures of pentapeptides and decapeptides were sim-
ilar, which were both single sequences and had a vocabulary of 20 amino
acids. The length of the input sequence was fixed, and a sequence length
of 5 and 10 was used to train pentapeptide and decapeptide, respectively.
For training the Combo model, the input sequence length was fixed at
10, and the peptides of insufficient length were complemented by blank
placeholders to fulfill the length. In the training of mixed pentapeptides,
there was an extra word ‘+’ in the vocabulary to connect the two pentapep-
tides. Data augmentation was performed on the mixed pentapeptide data
by swapping the positions of the two pentapeptides to eliminate the posi-
tion effect.

Regarding the hyperparameters of models, the optimizer was set as
stochastic gradient descent (SGD) and the learning rate as 0.2. Each
model was trained for 200 epochs and batch size was set as 512. A valida-
tion set (a quarter of training data) was used to select the best-performing
model and test the performance of the models on a test set (the rest of
the total data). The random seeds affected the initialization of the learn-
able parameters of the model as well as the partitioning of the dataset.
To ensure the reliability of the experimental results, each experiment was
repeatedly performed 10 times parallelly with different random seeds. The
experimental results presented in this paper were the averages for each
experiment.

For comparing the performance of deep-learning and non-deep-
learning models in predicting AP of peptides with enormous se-
quence space, five non-deep-learning models of support vector machine
(SVM),[32] random forest (RF),[33] nearest neighbor (NN),[34] Bayesian
ridge (BR),[35] and linear regression (LR) were also trained.[36] The train-
ing of non-deep learning models employed the open-source package of
ASCENDS.[56]

Chemical Synthesis: Peptides were prepared by solid phase peptide
synthesis (SPPS) using 2-chlorotrityl chloride resin. The side chains of the

Adv. Sci. 2023, 10, 2301544 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2301544 (8 of 10)
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corresponding N-Fmoc protected amino acids were protected by differ-
ent chemical groups. First, the C-terminus of the first amino acid was
conjugated to the resin. N, N’-dimethyl formamide (DMF) containing
20% piperidine was used to remove Fmoc protected group. Next, O-
(Benzotriazol-1-yl)-N, N, N’, N’-tetramethyluronium hexafluorophosphate
(HBTU) was used as a coupling reagent to couple the next amino acid to
the free amino group. The growth of the peptide chain one by one followed
the Fmoc SPPS protocol established above. After the last coupling step, ex-
cessive reagents were removed by a single DMF wash for 5 min, followed
by five steps of washing using DCM for 1 min. The peptide was cleaved
using 95% of trifluoroacetic acid (TFA) with 2.5% of triisopropylsilane and
2.5% of H2O for 45 min, with the resulting solution concentrated in vacuo.
The residue was precipitated with ice-cold diethyl ether and the resulting
precipitate was centrifuged for 10 min at 4 °C at 5000 rpm min−1. After-
ward, the supernatant was decanted, and the resulting solid was dissolved
in H2O/CH3CN (1:1) for HPLC (High-Performance Liquid Chromatogra-
phy) separation.

HPLC separation was conducted at Agilent 1260 Infinity II Manual
Preparative Liquid Chromatography system using a C18 RP column with
CH3CN (0.1% of trifluoroacetic acid) and water (0.1% of trifluoroacetic
acid) as the eluents. Flow: 10.0 mL min−1. Column temperature: 37 °C.
Eluant: A-water (0.1% TFA), B-CH3CN (0.1% TFA). Method: 0–11 min,
5−80% B, 11–13 min, 80−100% B, 13–16 min, 100% B, 16–18 min,
100−5% B. LC-MS was conducted at the Agilent InfinityLab LC/MSD sys-
tem.

TEM Characterization: The negative staining technique was employed
to observe the morphologies formed by peptides, with TEM samples pre-
pared at 25 °C. A micropipette was used to load 10 μL of sample solution to
a carbon-coated copper grid. The excess solution was removed by a piece
of filter paper. After rinsing the grid with the deionized water, uranyl acetate
was used to stain the sample for 1 min and then the grid was rinsed with
deionized water again. The samples were dried overnight in a desiccator
and then conducted on a Talos L120C system, operating at 120 kV.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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